Anti-Control of Chaos of Linear Continuous-Time Systems with Unknown Parameters Using Adaptive Control

Article Preview

Abstract:

In this paper, a feedback control method is proposed for the anti-control of chaos of linear controllable systems based on model-matching. First, it is considered that the linear system is completely known and an anti-control method is designed. Then, the parameters of the linear controllable system in companion form are assumed to be unknown. The chaotification is achieved choosing an appropriate control law and a parametric updating law based on Lyapunov stability theory, which provides the stability of the resulting adaptive system and the convergence of the tracking errors to zero. The proposed method is applied to anti-control of chaos of a linear system, while the Rössler chaotic system is the reference model. The numerical simulation results show the effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

4806-4813

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Wu, J. Lu, H. Iu and S. Wong, Suppression and generation of chaos for a three-dimensional autonomous system using parametric perturbations, Chaos Solitons Fractals, 2007, 31: 811–819.

DOI: 10.1016/j.chaos.2005.10.050

Google Scholar

[2] Z. M. Ge , C. M. Chang and Y. S. Chen, Anti-control of chaos of single time-scale brushless dc motors and chaos synchronization of different order systems, Chaos, Solitons and Fractals, 2006, 27, 1298–1315.

DOI: 10.1016/j.chaos.2005.04.095

Google Scholar

[3] R. T. Yang, Y. G. Hong, H. S. Qin and G. R. Chen, Anticontrol of chaos for dynamic systems in p-normal form: a homogeneity-based approach, Chaos Solitons Fractals, 2005, 25: 687–697.

DOI: 10.1016/j.chaos.2004.11.090

Google Scholar

[4] H. Huijberts, H. Nijmeijer and R. Willems, System identification in communication with chaotic systems, IEEE Trans. Circuits Syst I, 2000, 47(6): 800–808.

DOI: 10.1109/81.852932

Google Scholar

[5] S. Sinha and W. L. Ditto, Computing with distributed chaos, Phys Rev E, 1999, 60(1): 363–376.

Google Scholar

[6] S. J. Schiff, K. D. Jerger, H. Duong, T. Chang, M. L. Spano and W. L. Ditto, Controlling chaos in the brain, Nature, 1994, 370: 615–620.

DOI: 10.1038/370615a0

Google Scholar

[7] W. Yang, M. Ding, A. J. Mandell and E. Ott, Preserving chaos: control strategies to preserve complex dynamics with potential relevance to biological disorders, Phys Rev E, 1995, 51: 102–110.

DOI: 10.1103/physreve.51.102

Google Scholar

[8] G. Chen, J. Q. Fang, Y. Hong and H. S. Qin, Introduction to chaos control and anti-control, In: Leung TP, Qin HS (eds) Advanced topics in nonlinear control systems, Chap 6. World Scientific, Singapore, 2001, p.193–245.

DOI: 10.1142/9789812798541_0006

Google Scholar

[9] G. Chen and X. Dong, From chaos to order: methodologies, perspectives and applications, Singapore: World Scientific, (1998).

Google Scholar

[10] I. T. Georgiou and I. B. Schwartz, Dynamics of large scale coupled structural/mechanical systems: A singular perturbation/proper orthogonal decomposition approach, SIAM J. Appl. Math., 1999, 59: 1178–1207.

DOI: 10.1137/s0036139997299802

Google Scholar

[11] X. F. Wang, G. R. Chen and K. F. Man, Making a continuous-time minimum-phase system chaotic by using time-delay feedback, IEEE Trans Circuits Syst I, 2001, 48: 641–645.

DOI: 10.1109/81.922469

Google Scholar

[12] L. Yang, Z. Liu and G. R. Chen, Chaotifying a continuous-time system via impulsive input, Int J Bifurc Chaos, 2002, 12: 1121–1128.

DOI: 10.1142/s0218127402004954

Google Scholar

[13] H. G. Zhang, Z. L. Wang and D. Liu, Chaotifying fuzzy hyperbolic model using impulsive and nonlinear feedback control approaches, Int J Bifurc Chaos, 2005, 15: 2603–2610.

DOI: 10.1142/s021812740501354x

Google Scholar

[14] D. Chen, H. Wang and G. Chen, Anti-control of Hopf bifurcation, IEEE Trans Circuits Syst I, 2001, 48: 661–672.

DOI: 10.1109/81.928149

Google Scholar

[15] J. G. Lu, Chaotic behavior in sampled-data control systems with saturating control, Chaos Solitons Fractals, 2006, 30: 147–155.

DOI: 10.1016/j.chaos.2005.08.191

Google Scholar

[16] Q. F. Chen, Q. H. Zhong, Y. G. Hong and G. R. Chen, Generation and control of spherical circular attractors using switching schemes, Int J Bifurc Chaos, 2007, 17: 243–253.

DOI: 10.1142/s021812740701729x

Google Scholar

[17] Z. Li, J. B. Park, G. R. Chen, Y. H. Joo and Y. H. Choi, Generating chaos via feedback control from a stable TS fuzzy system through a sinusoidal nonlinearity, Int J Bifurc Chaos, 2002, 12: 2283–2291.

DOI: 10.1142/s0218127402005844

Google Scholar

[18] G. Chen and X. Yu, Chaos control, LNCIS 292, pp.179-204, 2003, Springer-Verlag Berlin Heidelberg.

Google Scholar

[19] M. W. Hirsch and S. Smale, Differential equations, dynamical systems and linear algebra, New York: Academic Press, (1974).

Google Scholar

[20] J. C. Sprott, Some simple chaotic jerk functions, Amer. J. Phys., 1997, 65: 537–543.

DOI: 10.1119/1.18585

Google Scholar

[21] T. Kailath, Linear systems, Englewood Cliffs, NJ: Prentice Hall, (1980).

Google Scholar

[22] J. E. Slotine and W. Li, Applied nonlinear control, Prentice Hall, (1991).

Google Scholar

[23] J. Lu, D. Zhang, Y. Sun and Y. Wu, Application of normal form in chaotic synchronization, American Control Conference, USA, (2005).

Google Scholar

[24] J. C. Sprott, Chaos and Time-Series Analysis, Oxford University Press, (2003).

Google Scholar