[1]
X. Wu, J. Lu, H. Iu and S. Wong, Suppression and generation of chaos for a three-dimensional autonomous system using parametric perturbations, Chaos Solitons Fractals, 2007, 31: 811–819.
DOI: 10.1016/j.chaos.2005.10.050
Google Scholar
[2]
Z. M. Ge , C. M. Chang and Y. S. Chen, Anti-control of chaos of single time-scale brushless dc motors and chaos synchronization of different order systems, Chaos, Solitons and Fractals, 2006, 27, 1298–1315.
DOI: 10.1016/j.chaos.2005.04.095
Google Scholar
[3]
R. T. Yang, Y. G. Hong, H. S. Qin and G. R. Chen, Anticontrol of chaos for dynamic systems in p-normal form: a homogeneity-based approach, Chaos Solitons Fractals, 2005, 25: 687–697.
DOI: 10.1016/j.chaos.2004.11.090
Google Scholar
[4]
H. Huijberts, H. Nijmeijer and R. Willems, System identification in communication with chaotic systems, IEEE Trans. Circuits Syst I, 2000, 47(6): 800–808.
DOI: 10.1109/81.852932
Google Scholar
[5]
S. Sinha and W. L. Ditto, Computing with distributed chaos, Phys Rev E, 1999, 60(1): 363–376.
Google Scholar
[6]
S. J. Schiff, K. D. Jerger, H. Duong, T. Chang, M. L. Spano and W. L. Ditto, Controlling chaos in the brain, Nature, 1994, 370: 615–620.
DOI: 10.1038/370615a0
Google Scholar
[7]
W. Yang, M. Ding, A. J. Mandell and E. Ott, Preserving chaos: control strategies to preserve complex dynamics with potential relevance to biological disorders, Phys Rev E, 1995, 51: 102–110.
DOI: 10.1103/physreve.51.102
Google Scholar
[8]
G. Chen, J. Q. Fang, Y. Hong and H. S. Qin, Introduction to chaos control and anti-control, In: Leung TP, Qin HS (eds) Advanced topics in nonlinear control systems, Chap 6. World Scientific, Singapore, 2001, p.193–245.
DOI: 10.1142/9789812798541_0006
Google Scholar
[9]
G. Chen and X. Dong, From chaos to order: methodologies, perspectives and applications, Singapore: World Scientific, (1998).
Google Scholar
[10]
I. T. Georgiou and I. B. Schwartz, Dynamics of large scale coupled structural/mechanical systems: A singular perturbation/proper orthogonal decomposition approach, SIAM J. Appl. Math., 1999, 59: 1178–1207.
DOI: 10.1137/s0036139997299802
Google Scholar
[11]
X. F. Wang, G. R. Chen and K. F. Man, Making a continuous-time minimum-phase system chaotic by using time-delay feedback, IEEE Trans Circuits Syst I, 2001, 48: 641–645.
DOI: 10.1109/81.922469
Google Scholar
[12]
L. Yang, Z. Liu and G. R. Chen, Chaotifying a continuous-time system via impulsive input, Int J Bifurc Chaos, 2002, 12: 1121–1128.
DOI: 10.1142/s0218127402004954
Google Scholar
[13]
H. G. Zhang, Z. L. Wang and D. Liu, Chaotifying fuzzy hyperbolic model using impulsive and nonlinear feedback control approaches, Int J Bifurc Chaos, 2005, 15: 2603–2610.
DOI: 10.1142/s021812740501354x
Google Scholar
[14]
D. Chen, H. Wang and G. Chen, Anti-control of Hopf bifurcation, IEEE Trans Circuits Syst I, 2001, 48: 661–672.
DOI: 10.1109/81.928149
Google Scholar
[15]
J. G. Lu, Chaotic behavior in sampled-data control systems with saturating control, Chaos Solitons Fractals, 2006, 30: 147–155.
DOI: 10.1016/j.chaos.2005.08.191
Google Scholar
[16]
Q. F. Chen, Q. H. Zhong, Y. G. Hong and G. R. Chen, Generation and control of spherical circular attractors using switching schemes, Int J Bifurc Chaos, 2007, 17: 243–253.
DOI: 10.1142/s021812740701729x
Google Scholar
[17]
Z. Li, J. B. Park, G. R. Chen, Y. H. Joo and Y. H. Choi, Generating chaos via feedback control from a stable TS fuzzy system through a sinusoidal nonlinearity, Int J Bifurc Chaos, 2002, 12: 2283–2291.
DOI: 10.1142/s0218127402005844
Google Scholar
[18]
G. Chen and X. Yu, Chaos control, LNCIS 292, pp.179-204, 2003, Springer-Verlag Berlin Heidelberg.
Google Scholar
[19]
M. W. Hirsch and S. Smale, Differential equations, dynamical systems and linear algebra, New York: Academic Press, (1974).
Google Scholar
[20]
J. C. Sprott, Some simple chaotic jerk functions, Amer. J. Phys., 1997, 65: 537–543.
DOI: 10.1119/1.18585
Google Scholar
[21]
T. Kailath, Linear systems, Englewood Cliffs, NJ: Prentice Hall, (1980).
Google Scholar
[22]
J. E. Slotine and W. Li, Applied nonlinear control, Prentice Hall, (1991).
Google Scholar
[23]
J. Lu, D. Zhang, Y. Sun and Y. Wu, Application of normal form in chaotic synchronization, American Control Conference, USA, (2005).
Google Scholar
[24]
J. C. Sprott, Chaos and Time-Series Analysis, Oxford University Press, (2003).
Google Scholar