[1]
J.A. Profeta III, W.G. Vogt, and M.H. Mickle, Torque disturbance rejection in high accuracy systems, IEEE Trans. Aerospace Electronic system. 26(2), 232-237 (1990).
DOI: 10.1109/7.53456
Google Scholar
[2]
J.A. Profeta III, W.G. Vogt, and M.H. Mickle, Disturbance estimation and compensation in linear system, IEEE Trans. Aerospace Electronic system. 26(2), 225-231 (1990).
DOI: 10.1109/7.53455
Google Scholar
[3]
C.C. Lee, Fuzzy logic in control systems: fuzzy logic controller-part I, IEEE Trans. Electronic system Man Cyben. 20(2), 404-418 (1990).
DOI: 10.1109/21.52551
Google Scholar
[4]
C.C. Lee, Fuzzy logic in control system: fuzzy logic controller-part II, IEEE Trans. Electronic system Man Cyben. 20(2), 419-435 (1990).
DOI: 10.1109/21.52552
Google Scholar
[5]
M. F Azeem, M. Hanmandlu,N. Ahmed, Structure identification of generalized adaptive neuro-fuzzy inference systems, IEEE Trans. Fuzzy system 11(5) (2003) 666-678.
DOI: 10.1109/tfuzz.2003.817857
Google Scholar
[6]
Y. lin,G.A. CunninghamIII, A new approach to fuzzy neural system modeling, IEEE Trans. Fuzzy systems. 3(2) (1995) 190-198.
DOI: 10.1109/91.388173
Google Scholar
[7]
J. -H. Chiang, Choquet fuzzy integral-based hierarchical networks for decision analysis, IEEE Trans. Fuzzy Syst. 7 (1) (1999) 63–71.
DOI: 10.1109/91.746311
Google Scholar
[8]
M. sugeno,T. yasukawa, A fuzzy logic based approach to qualitative modeling, IEEE Trans. Fuzzy system 1(1)(1993) 7-31.
DOI: 10.1109/tfuzz.1993.390281
Google Scholar
[9]
M. Grabish, H.T. Nguyenand, E.A. Walker, Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference, Kluwer Academic Publish- ers, (1995).
Google Scholar
[10]
M. Grabish, T. Murofushi, M. Sugeno, Fuzzy Measures and Integrals: Theory and Applications, Physica-Verlag, Heidelberg, (2000).
Google Scholar
[11]
M.A. Mohammed, Q-measures: an efficient-extension of the Sugeno λ-measure, IEEE Trans. Fuzzy Syst. 11 (3) (2003) 419–426.
DOI: 10.1109/tfuzz.2003.812701
Google Scholar
[12]
K.S. Narendra, K. Parathasarathy, Identification and control of a dynamic system using neural network, IEEE Trans. Neural Network 1 (1) (1990)4–27.
Google Scholar
[13]
S. Srivastava, M. Singh, A.N. Jha, Control and identification of a non linear systems affected by noise using wavelet network, in: Proceedings of International Workshop on Intelligent Systems Design and Application (ISDA-2002), Atlanta, USA, August, (2002).
Google Scholar
[14]
M. Sugeno, Fuzzy measures and fuzzy integrals- a survey in M.M. Gupta, G.N. Saridis, B.R. Gaines (Eds. ), Fuzzy Automata and Decision Processes, North-Holland, Amsterdam, The Netherlands, 1977, p.89– 102.
Google Scholar
[15]
M. Sugeno, G.T. Kang, Structure identification of fuzzy model, Fuzzy Sets Syst. 28 (1988) 15–33.
DOI: 10.1016/0165-0114(88)90113-3
Google Scholar
[16]
S. Srivastava, M. Singh, M. Hanmandlu, A.N. Jha, New fuzzy wavelet neural networks for system identification and control, J. Appl. Soft Comput. 6 (I) (2005) 1–17.
DOI: 10.1016/j.asoc.2004.10.001
Google Scholar
[17]
J.M. Zurada, Introduction to Artificial Neural Systems, West Publishing, St. Paul, MN, (1992).
Google Scholar
[18]
L.A. Zadeh, Aggregation operators and fuzzy systems modeling, Fuzzy Sets Syst. 67 (1994) 129–146.
Google Scholar
[19]
K. Tanaka, Modeling and control of carbon monoxide concentration using neuro-fuzzy technique, IEEE Trans. Fuzzy Syst. 3 (3) (1995) 271–279.
DOI: 10.1109/91.413233
Google Scholar
[20]
L.C. Lang, J.S. Kwon, On the representation of Choquet integrals of set valued functions and null sets, Fuzzy Sets Syst. 112 (2000) 233–239.
DOI: 10.1016/s0165-0114(98)00184-5
Google Scholar