[1]
Biswas , S. Das , A. Abraham , S. Dasgupta, Design of fractional-order controllers with an improved differential evolution, Engineering applications of artificial intelligence, vol. 22, p.343–350, (2009).
DOI: 10.1016/j.engappai.2008.06.003
Google Scholar
[2]
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, USA, (1999).
Google Scholar
[3]
S. Manabe, "A Suggestion of Fractional-Order Controller for Flexible Spacecraft Attitude Control, Nonlinear Dynamics, vol. 29, pp.251-268, (2002).
Google Scholar
[4]
A. Oustaloup, La D´erivation non Enti`ere, Hermes, Paris, (1995).
Google Scholar
[5]
I. Petras, B.M. Vinagre, Practical application of digital fractional-order controller to temperature control, Acta Montanistica Slovaca, vol. 7, no. 2, pp.131-137, (2002).
Google Scholar
[6]
I. Petras, Fractional order feedback control of a DC motor, Journal of Electrical Engineering, vol. 60, no. 3, p.117–128, (2009).
Google Scholar
[7]
N. Hemati, J. S. Thorp, and M. C. Leu, Robust nonlinear control of brushless dc motors for direct-drive robotic applications, IEEE Trans. Ind. Electron., vol. 37, p.460–468, (1990).
DOI: 10.1109/41.103449
Google Scholar
[8]
P. M. Pelczewski and U. H. Kunz, The optimal control of a constrained drive system with brushless dc motor, IEEE Trans. Ind. Electron., vol. 37, p.342–348, Oct. (1990).
DOI: 10.1109/41.103428
Google Scholar
[9]
F. J. Lin, K. K. Shyu, and Y. S. Lin, Variable structure adaptive control for PM synchronous servo motor drive, IEE Proc. IEE B: Elect. PowerApplicat., vol. 146, p.173–185, (1999).
DOI: 10.1049/ip-epa:19990113
Google Scholar
[10]
E. Cerruto, A. Consoli, A. Raciti, and A. Testa, A robust adaptive controller for PM motor drives in robotic applications, IEEE Trans. Power Electron., vol. 10, p.62–71, Jan. (1995).
DOI: 10.1109/63.368459
Google Scholar
[11]
C. -L. Lin, and H. -Y. Jan, Evolutionarily multiobjective PID control for linear brushless DC motor, , in Proc. IEEE Int. Conf . Industrial Elect. Society, pp.39-45, (2002).
DOI: 10.1109/iecon.2002.1185285
Google Scholar
[12]
J. Kennedy, and R. C. Eberhart, Particle swarm optimization, Proc. IEEE Int. conf. on Neural Networks. Piscataway, NJ, pp.1942-1948, (1995).
Google Scholar
[13]
R. C. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, Proc. Int. on Micro Machine and Human science, Japan, pp.39-43, (1995).
DOI: 10.1109/mhs.1995.494215
Google Scholar
[14]
A. Oustaloup, F. Levron, F. Nanot, B. Mathieu, Frequency band complex non-integer differentiator: characterization and synthesis, IEEE Trans. Circuits Systems I: Fundam. Theory Application, vol. 47, no1, pp.25-40, (2000).
DOI: 10.1109/81.817385
Google Scholar
[15]
J.G. Lue, Y.Q. Chen, Robust stability and stabilization of fractional-order interval systems with the fractional order : The case, IEEE Transactions on Automatic Control, vol. 55, pp.152-158, (2010).
DOI: 10.1109/tac.2009.2033738
Google Scholar
[16]
J. G. Lu and G. R. Chen, Robust stability and stabilization of fractional-order interval systems: An LMI approach, IEEE Trans. Autom. Control, vol. 54, no. 6, p.1294–1299, Jun. (2009).
DOI: 10.1109/tac.2009.2013056
Google Scholar
[17]
S. Y. Xing, J. G. Lu, Robust Stability and stabilization of fractional order linear systems with nonlinear uncertain parameters: An LMI approach, Chaos, Solutions and Fractals, vol. 42, pp.1163-1169, (2009).
DOI: 10.1016/j.chaos.2009.03.017
Google Scholar
[18]
H. S. Ahn, Y. Q. Chen, and I. Podlubny, Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality, Appl. Math. Comput., vol. 187, no. 1, p.27–34, (2007).
DOI: 10.1016/j.amc.2006.08.099
Google Scholar
[19]
M. S. Tavazoei, M. Haeri, A note on the stability of fractional order systems, Mathematics and Computers in Simulation, vol. 79, pp.1566-1576, (2009).
DOI: 10.1016/j.matcom.2008.07.003
Google Scholar
[20]
H. S. Ahn and Y. Q. Chen, Necessary and sufficient stability condition of fractional-order interval linear systems, Automatica, vol. 44, no. 11, pp.2985-2987, (2008).
DOI: 10.1016/j.automatica.2008.07.003
Google Scholar
[21]
Y.Q. Chen, H. S. Ahn, I. Podlubny, Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal Processing, vol. 86, pp.2611-2618, (2006).
DOI: 10.1016/j.sigpro.2006.02.011
Google Scholar
[22]
N. Tan, O.F. Ozguven, M.M. Ozyetkin, Robust Stability Analysis of fractional order interval polynomials, ISA transactions, vol. 48, pp.166-172, (2009).
DOI: 10.1016/j.isatra.2009.01.002
Google Scholar
[23]
R.C. Dorf, R.H. Bishop, Modern control systems, Addison-Wesley, New York, (1990).
Google Scholar
[24]
B. Allaoua, B. Gasbaoui, and B. Mebaraki, Setting up PID DC motor speed control alteration parameters using Particle Swarm Optimization Strategy, Leonardo Electronic Journal of Practices and Technologies, vol. 14, pp.19-32, (2009).
DOI: 10.2174/978160805126711201010003
Google Scholar
[25]
M. M. Kandil et al., A new approach for optimizing backpropagation training with variable gain using PSO, GVIP 05 Conf., CICC, Cairo, Egypt, (2005).
Google Scholar
[26]
R. C. Eberhart, and Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, Proc. IEEE Congress on Evolutionary Computations, pp.84-88, (2000).
DOI: 10.1109/cec.2000.870279
Google Scholar
[27]
C. Hwang, Y.C. Cheng, A numerical algorithm for stability testing of fractional delay systems, Automatica, vol. 42, pp.825-831, (2006).
DOI: 10.1016/j.automatica.2006.01.008
Google Scholar