Robust Fractional Order Control of a DC Motor Based on Particle Swarm Optimization

Article Preview

Abstract:

his paper presents a robust stable controller for speed control of a linear permanent magnet DC motor. A fractional controller is presented and the optimal parameters of this controller are obtained using Particle Swarm Optimization (PSO) technique. Interval uncertainty is considered in the parameters of the DC motor. Stability of the closed loop system with the proposed controller in presence of interval uncertainty is verified through the extension of Kharitanov’s theorem for fractional order systems. Simulation results demonstrate the successful performance of the proposed controller.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

5030-5037

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Biswas , S. Das , A. Abraham , S. Dasgupta, Design of fractional-order controllers with an improved differential evolution, Engineering applications of artificial intelligence, vol. 22, p.343–350, (2009).

DOI: 10.1016/j.engappai.2008.06.003

Google Scholar

[2] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, USA, (1999).

Google Scholar

[3] S. Manabe, "A Suggestion of Fractional-Order Controller for Flexible Spacecraft Attitude Control, Nonlinear Dynamics, vol. 29, pp.251-268, (2002).

Google Scholar

[4] A. Oustaloup, La D´erivation non Enti`ere, Hermes, Paris, (1995).

Google Scholar

[5] I. Petras, B.M. Vinagre, Practical application of digital fractional-order controller to temperature control, Acta Montanistica Slovaca, vol. 7, no. 2, pp.131-137, (2002).

Google Scholar

[6] I. Petras, Fractional order feedback control of a DC motor, Journal of Electrical Engineering, vol. 60, no. 3, p.117–128, (2009).

Google Scholar

[7] N. Hemati, J. S. Thorp, and M. C. Leu, Robust nonlinear control of brushless dc motors for direct-drive robotic applications, IEEE Trans. Ind. Electron., vol. 37, p.460–468, (1990).

DOI: 10.1109/41.103449

Google Scholar

[8] P. M. Pelczewski and U. H. Kunz, The optimal control of a constrained drive system with brushless dc motor, IEEE Trans. Ind. Electron., vol. 37, p.342–348, Oct. (1990).

DOI: 10.1109/41.103428

Google Scholar

[9] F. J. Lin, K. K. Shyu, and Y. S. Lin, Variable structure adaptive control for PM synchronous servo motor drive, IEE Proc. IEE B: Elect. PowerApplicat., vol. 146, p.173–185, (1999).

DOI: 10.1049/ip-epa:19990113

Google Scholar

[10] E. Cerruto, A. Consoli, A. Raciti, and A. Testa, A robust adaptive controller for PM motor drives in robotic applications, IEEE Trans. Power Electron., vol. 10, p.62–71, Jan. (1995).

DOI: 10.1109/63.368459

Google Scholar

[11] C. -L. Lin, and H. -Y. Jan, Evolutionarily multiobjective PID control for linear brushless DC motor, , in Proc. IEEE Int. Conf . Industrial Elect. Society, pp.39-45, (2002).

DOI: 10.1109/iecon.2002.1185285

Google Scholar

[12] J. Kennedy, and R. C. Eberhart, Particle swarm optimization, Proc. IEEE Int. conf. on Neural Networks. Piscataway, NJ, pp.1942-1948, (1995).

Google Scholar

[13] R. C. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, Proc. Int. on Micro Machine and Human science, Japan, pp.39-43, (1995).

DOI: 10.1109/mhs.1995.494215

Google Scholar

[14] A. Oustaloup, F. Levron, F. Nanot, B. Mathieu, Frequency band complex non-integer differentiator: characterization and synthesis, IEEE Trans. Circuits Systems I: Fundam. Theory Application, vol. 47, no1, pp.25-40, (2000).

DOI: 10.1109/81.817385

Google Scholar

[15] J.G. Lue, Y.Q. Chen, Robust stability and stabilization of fractional-order interval systems with the fractional order : The case, IEEE Transactions on Automatic Control, vol. 55, pp.152-158, (2010).

DOI: 10.1109/tac.2009.2033738

Google Scholar

[16] J. G. Lu and G. R. Chen, Robust stability and stabilization of fractional-order interval systems: An LMI approach, IEEE Trans. Autom. Control, vol. 54, no. 6, p.1294–1299, Jun. (2009).

DOI: 10.1109/tac.2009.2013056

Google Scholar

[17] S. Y. Xing, J. G. Lu, Robust Stability and stabilization of fractional order linear systems with nonlinear uncertain parameters: An LMI approach, Chaos, Solutions and Fractals, vol. 42, pp.1163-1169, (2009).

DOI: 10.1016/j.chaos.2009.03.017

Google Scholar

[18] H. S. Ahn, Y. Q. Chen, and I. Podlubny, Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality, Appl. Math. Comput., vol. 187, no. 1, p.27–34, (2007).

DOI: 10.1016/j.amc.2006.08.099

Google Scholar

[19] M. S. Tavazoei, M. Haeri, A note on the stability of fractional order systems, Mathematics and Computers in Simulation, vol. 79, pp.1566-1576, (2009).

DOI: 10.1016/j.matcom.2008.07.003

Google Scholar

[20] H. S. Ahn and Y. Q. Chen, Necessary and sufficient stability condition of fractional-order interval linear systems, Automatica, vol. 44, no. 11, pp.2985-2987, (2008).

DOI: 10.1016/j.automatica.2008.07.003

Google Scholar

[21] Y.Q. Chen, H. S. Ahn, I. Podlubny, Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal Processing, vol. 86, pp.2611-2618, (2006).

DOI: 10.1016/j.sigpro.2006.02.011

Google Scholar

[22] N. Tan, O.F. Ozguven, M.M. Ozyetkin, Robust Stability Analysis of fractional order interval polynomials, ISA transactions, vol. 48, pp.166-172, (2009).

DOI: 10.1016/j.isatra.2009.01.002

Google Scholar

[23] R.C. Dorf, R.H. Bishop, Modern control systems, Addison-Wesley, New York, (1990).

Google Scholar

[24] B. Allaoua, B. Gasbaoui, and B. Mebaraki, Setting up PID DC motor speed control alteration parameters using Particle Swarm Optimization Strategy, Leonardo Electronic Journal of Practices and Technologies, vol. 14, pp.19-32, (2009).

DOI: 10.2174/978160805126711201010003

Google Scholar

[25] M. M. Kandil et al., A new approach for optimizing backpropagation training with variable gain using PSO, GVIP 05 Conf., CICC, Cairo, Egypt, (2005).

Google Scholar

[26] R. C. Eberhart, and Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, Proc. IEEE Congress on Evolutionary Computations, pp.84-88, (2000).

DOI: 10.1109/cec.2000.870279

Google Scholar

[27] C. Hwang, Y.C. Cheng, A numerical algorithm for stability testing of fractional delay systems, Automatica, vol. 42, pp.825-831, (2006).

DOI: 10.1016/j.automatica.2006.01.008

Google Scholar