[1]
K. Abiko, S. Suzuki and H. Kimura, Effect of carbon on the toughness and fracture mode of Fe-P alloy Trans. Jpn. Inst. Met. 23 (1982) 43-52.
Google Scholar
[2]
J. Kameda and J. Macmahon, Jr., Effects of Sb, Sn, and P on the strength of grain boundaries in a Ni-Cr steel, Metall. Trans. A 12A (1981) 31-37.
DOI: 10.1007/bf02648505
Google Scholar
[3]
R. Wu, A. J. Freeman and G. B. Olson, First Principles Determination of the Effects of Phosphorus and Boron on Iron Grain Boundary Cohesion, Science 265 (1994) 376-380.
DOI: 10.1126/science.265.5170.376
Google Scholar
[4]
R. Wu, A. J. Freeman and G. B. Olson, Nature of phosphorus embrittlement of the FeΣ3.
Google Scholar
[10]
111) grain boundary Phys. Rev. B 50 (1994) 75-81.
Google Scholar
[5]
M. Yamaguchi, Y. Nishiyama and H. Kaburaki, Decohesion of iron grain boundaries by sulfur or phosphorous segregation: First-principles calculations, Phys. Rev. B 76 (2007) 035418.
DOI: 10.1103/physrevb.76.035418
Google Scholar
[6]
Y. -Q. Fen and C. -Y. Wang, Electronic effects of nitrogen and phosphorus on iron grain boundary cohesion, Comput. Mater. Sci. 20 (2001) 48-56.
DOI: 10.1016/s0927-0256(00)00124-5
Google Scholar
[7]
M. Yamaguchi, First-principles study on the grain boundary embrittlement of metals by solute segregation: Part I. iron (Fe)-solute (B, C, P, and S) systems, Metall. Mater. Trans. A 42 (2011) 319-329.
DOI: 10.1007/s11661-010-0381-5
Google Scholar
[8]
J. R. Rice and J. -S. Wang, Embrittlement of interfaces by solute segregation, Mater. Sci. Eng. A 107 (1989) 23-40 (1989).
Google Scholar
[9]
G. -H. Lu, S. Deng, T. Wang, M. Kohyama and R. Yamamoto, Theoretical tensile strength of an Al grain boundary, Phys. Rev. B 69 (2004) 134106.
DOI: 10.1103/physrevb.69.134106
Google Scholar
[10]
M. Yamaguchi, M. Shiga and H. Kaburaki, Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System, Science 307 (2005) 393-397.
DOI: 10.1126/science.1104624
Google Scholar
[11]
G. -H. Lu, Y. Zhang, S. Deng, T. Wang, M. Kohyama, R. Yamamoto, F. Liu, K. Horikawa and M. Kanno, Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening, Phys. Rev. B 73 (2006) 224115.
DOI: 10.1103/physrevb.73.224115
Google Scholar
[12]
Y. Zhang, G. H. Lu, T. Wang, S. Deng, M. Kohyama and R. Yamamoto: Mater. Trans. 47 (2006) 2678-2681.
Google Scholar
[13]
Y. Zhang, G. -H. Lu, S. Deng, T. Wang, H. Xu, M. Kohyama and R. Yamamoto, Weakening of an aluminum grain boundary induced by sulfur segregation: A first-principles computational tensile test, Phys. Rev. B 75 (2007) 174101.
DOI: 10.1103/physrevb.75.174101
Google Scholar
[14]
S. Ogata, Y. Umeno and M. Kohyama, First-principles approaches to intrinsic strength and deformation of materials: perfect crystals, nano-structures, surfaces and interfaces, Modell. Simul. Mater. Sci. Eng. 17 (2009) 013001.
DOI: 10.1088/0965-0393/17/1/013001
Google Scholar
[15]
M. Yuasa and M. Mabuchi, Bond mobility mechanism in grain boundary embrittlement: First-principles tensile tests of Fe with a P-segregated Σ3 grain boundary, Phys. Rev. B 82 (2010) 094108.
DOI: 10.1103/physrevb.82.094108
Google Scholar
[16]
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045-1097.
DOI: 10.1103/revmodphys.64.1045
Google Scholar
[17]
P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864-B871.
DOI: 10.1103/physrev.136.b864
Google Scholar
[18]
W. Kohn and L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[19]
J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[20]
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.
DOI: 10.1103/physrevb.41.7892
Google Scholar
[21]
Z. -Z. Chen and C. -Y. Wang, First-principles study on the effects of co-segregation of Ti, B and O on the cohesion of the α-Fe grain boundary, J. Phys.: Condens. Matter 17 (2005) 6645-6652.
DOI: 10.1088/0953-8984/17/42/005
Google Scholar
[22]
R. Haydock, The mobility of bonds at metal surfaces, J. Phys. C: Solid State Phys. 14 (1981) 3807-3816.
DOI: 10.1088/0022-3719/14/26/016
Google Scholar
[23]
L. Goodwin, R. J. Needs and V. Heine, Effect of impurity bonding on grain-boundary embrittlement, Phys. Rev. Lett. 60 (1988) 2050-(2053).
DOI: 10.1103/physrevlett.60.2050
Google Scholar
[24]
L. Goodwin, R. J. Needs and V. Heine, A pseudopotential total energy study of impurity-prompted intergranular embrittlement, J. Phys.: Condens. Matter 2 (1990) 351-365.
DOI: 10.1088/0953-8984/2/2/011
Google Scholar
[25]
C. L. Briant and R. P. Messmer, Electronic effects of sulphur in nickel A model for grain boundary embrittlement, Phil. Mag. B 42 (1980) 569-576.
DOI: 10.1080/01418638008227298
Google Scholar
[26]
R. P. Messmer and C. L. Briant, The role of chemical bonding in grain boundary embrittlement, Acta Metall. 30 (1982) 457-467.
DOI: 10.1016/0001-6160(82)90226-7
Google Scholar
[27]
M. Yuasa and M. Mabuchi, Effects of segregated Cu on an Fe grain boundary by first-principles tensile tests, J. Phys.: Condens. Matter 22 (2010) 505705.
DOI: 10.1088/0953-8984/22/50/505705
Google Scholar