Grain Boundary Embrittlement of Fe Induced by P Segregation: First-Principles Tensile Tests

Article Preview

Abstract:

The GB embrittlement mechanism of Fe enhanced by P segregation has been investigated by first-principles tensile tests because a P atom is a famous GB embrittler in Fe. The first-principles tensile tests have been performed on Fe with two P-segregated GBs, where P atoms are located at the different sites, and with a nonsegregated GB. The tensile strength and the strain to failure in the P-segregated GBs were lower than those in the nonsegegated GB. The first bond breaking occurred at the Fe-P bond owing to the covalent-like characteristics, although the charge densities were high at the Fe-P bonds even just before the bond breaking. This premature bond breaking of Fe-P was independent of the location of the P atom.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

455-460

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Abiko, S. Suzuki and H. Kimura, Effect of carbon on the toughness and fracture mode of Fe-P alloy Trans. Jpn. Inst. Met. 23 (1982) 43-52.

Google Scholar

[2] J. Kameda and J. Macmahon, Jr., Effects of Sb, Sn, and P on the strength of grain boundaries in a Ni-Cr steel, Metall. Trans. A 12A (1981) 31-37.

DOI: 10.1007/bf02648505

Google Scholar

[3] R. Wu, A. J. Freeman and G. B. Olson, First Principles Determination of the Effects of Phosphorus and Boron on Iron Grain Boundary Cohesion, Science 265 (1994) 376-380.

DOI: 10.1126/science.265.5170.376

Google Scholar

[4] R. Wu, A. J. Freeman and G. B. Olson, Nature of phosphorus embrittlement of the FeΣ3.

Google Scholar

[10] 111) grain boundary Phys. Rev. B 50 (1994) 75-81.

Google Scholar

[5] M. Yamaguchi, Y. Nishiyama and H. Kaburaki, Decohesion of iron grain boundaries by sulfur or phosphorous segregation: First-principles calculations, Phys. Rev. B 76 (2007) 035418.

DOI: 10.1103/physrevb.76.035418

Google Scholar

[6] Y. -Q. Fen and C. -Y. Wang, Electronic effects of nitrogen and phosphorus on iron grain boundary cohesion, Comput. Mater. Sci. 20 (2001) 48-56.

DOI: 10.1016/s0927-0256(00)00124-5

Google Scholar

[7] M. Yamaguchi, First-principles study on the grain boundary embrittlement of metals by solute segregation: Part I. iron (Fe)-solute (B, C, P, and S) systems, Metall. Mater. Trans. A 42 (2011) 319-329.

DOI: 10.1007/s11661-010-0381-5

Google Scholar

[8] J. R. Rice and J. -S. Wang, Embrittlement of interfaces by solute segregation, Mater. Sci. Eng. A 107 (1989) 23-40 (1989).

Google Scholar

[9] G. -H. Lu, S. Deng, T. Wang, M. Kohyama and R. Yamamoto, Theoretical tensile strength of an Al grain boundary, Phys. Rev. B 69 (2004) 134106.

DOI: 10.1103/physrevb.69.134106

Google Scholar

[10] M. Yamaguchi, M. Shiga and H. Kaburaki, Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System, Science 307 (2005) 393-397.

DOI: 10.1126/science.1104624

Google Scholar

[11] G. -H. Lu, Y. Zhang, S. Deng, T. Wang, M. Kohyama, R. Yamamoto, F. Liu, K. Horikawa and M. Kanno, Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening, Phys. Rev. B 73 (2006) 224115.

DOI: 10.1103/physrevb.73.224115

Google Scholar

[12] Y. Zhang, G. H. Lu, T. Wang, S. Deng, M. Kohyama and R. Yamamoto: Mater. Trans. 47 (2006) 2678-2681.

Google Scholar

[13] Y. Zhang, G. -H. Lu, S. Deng, T. Wang, H. Xu, M. Kohyama and R. Yamamoto, Weakening of an aluminum grain boundary induced by sulfur segregation: A first-principles computational tensile test, Phys. Rev. B 75 (2007) 174101.

DOI: 10.1103/physrevb.75.174101

Google Scholar

[14] S. Ogata, Y. Umeno and M. Kohyama, First-principles approaches to intrinsic strength and deformation of materials: perfect crystals, nano-structures, surfaces and interfaces, Modell. Simul. Mater. Sci. Eng. 17 (2009) 013001.

DOI: 10.1088/0965-0393/17/1/013001

Google Scholar

[15] M. Yuasa and M. Mabuchi, Bond mobility mechanism in grain boundary embrittlement: First-principles tensile tests of Fe with a P-segregated Σ3 grain boundary, Phys. Rev. B 82 (2010) 094108.

DOI: 10.1103/physrevb.82.094108

Google Scholar

[16] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045-1097.

DOI: 10.1103/revmodphys.64.1045

Google Scholar

[17] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864-B871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[18] W. Kohn and L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[19] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[20] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[21] Z. -Z. Chen and C. -Y. Wang, First-principles study on the effects of co-segregation of Ti, B and O on the cohesion of the α-Fe grain boundary, J. Phys.: Condens. Matter 17 (2005) 6645-6652.

DOI: 10.1088/0953-8984/17/42/005

Google Scholar

[22] R. Haydock, The mobility of bonds at metal surfaces, J. Phys. C: Solid State Phys. 14 (1981) 3807-3816.

DOI: 10.1088/0022-3719/14/26/016

Google Scholar

[23] L. Goodwin, R. J. Needs and V. Heine, Effect of impurity bonding on grain-boundary embrittlement, Phys. Rev. Lett. 60 (1988) 2050-(2053).

DOI: 10.1103/physrevlett.60.2050

Google Scholar

[24] L. Goodwin, R. J. Needs and V. Heine, A pseudopotential total energy study of impurity-prompted intergranular embrittlement, J. Phys.: Condens. Matter 2 (1990) 351-365.

DOI: 10.1088/0953-8984/2/2/011

Google Scholar

[25] C. L. Briant and R. P. Messmer, Electronic effects of sulphur in nickel A model for grain boundary embrittlement, Phil. Mag. B 42 (1980) 569-576.

DOI: 10.1080/01418638008227298

Google Scholar

[26] R. P. Messmer and C. L. Briant, The role of chemical bonding in grain boundary embrittlement, Acta Metall. 30 (1982) 457-467.

DOI: 10.1016/0001-6160(82)90226-7

Google Scholar

[27] M. Yuasa and M. Mabuchi, Effects of segregated Cu on an Fe grain boundary by first-principles tensile tests, J. Phys.: Condens. Matter 22 (2010) 505705.

DOI: 10.1088/0953-8984/22/50/505705

Google Scholar