Micropatterning Polymer Materials to Improve Endothelialization

Article Preview

Abstract:

Several studies have shown that 65 % of expanded poly (tetrafluoroethylene) (ePTFE) vascular prostheses had to be explanted within 10 years of implantation in humans. The reasons for these explantations relied on thrombosis formation and poor hemocompatibility of synthetic polymers. It has been shown that surface modification of ePTFE arterial prostheses could enable their endothelialization therefore improving their biocompatibility and hemocompatibility. Indeed, endothelial cells naturally cover the biological blood vessel wall and consequently, an endothelial layer constitutes the best achievable hemocompatible surface. In this context, our strategy consisted in micropatterning cell adhesion (RGD) and proliferation (WQPPRARI) peptides on the surface of plasma-functionalized PTFE, therefore enabling covalent conjugation of the peptides. Basically, the technology consisted in spraying a solution of the adhesion peptide, therefore leading to 10 µm-diameter RGD spots semi-randomly distributed over the sample and covering 20 % of the whole polymer surface. In a second step, proliferation peptide was applied to the remaining surface by soaking, therefore covering the unreacted surface. The 20 % coverage was obtained by using an x-y table, programmed to move from side to side of the surface on x value, with an increment on y value that has been calibrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

777-782

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C. Porte-Durrieu, C. Labrugere, F. Villars, F. Lefebvre, S. Dutoya, A. Guette, L. Bordenave and C. Baquey: J. Biomed. Mater. Res. Vol. 46 (1999), pp.368-375.

DOI: 10.1002/(sici)1097-4636(19990905)46:3<368::aid-jbm9>3.0.co;2-8

Google Scholar

[2] S.P. Massia and J.A. Hubbell: J. Biomed. Mater. Res. Vol. 25 (1991), pp.223-242.

Google Scholar

[3] A. Tiwari, A. Kidane, H. Salacinski, G. Punshon, G. Hamilton and A.M. Seifalan: Eur. J. Vasc. Endovasc. Surg. Vol. 25 (2003), pp.325-329.

Google Scholar

[4] K.P. Walluscheck, G. Steinhoff, S. Kelm and A. Haverich: Eur. J. Vasc. Endovasc. Surg. Vol. 12 (1996), pp.321-330.

Google Scholar

[5] S.P. Massia and J. Stark: J. Biomed. Mater. Res. Vol. 56 (2001), pp.390-399.

Google Scholar

[6] G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingber: Ann. Rev. Biomed. Eng. Vol. 3 (2001), pp.335-373.

Google Scholar

[7] C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides and D.E. Ingber: Biotechnol. Prog. Vol. 14 (1998), pp.356-363.

DOI: 10.1021/bp980031m

Google Scholar

[8] N.D. Gallant, J.R. Capadona, A.B. Frazier, D.M. Collard and A.J. Garcia: Langmuir Vol. 18 (2002), pp.5579-5584.

Google Scholar

[9] T.G. Vargo, P.M. Thompson, L.J. Gerenser, R.F. Valentini, P. Aebischer, D.J. Hook and J.A. Gardella, Jr.: Langmuir Vol. 8 (1992), pp.130-134.

DOI: 10.1021/la00037a025

Google Scholar

[10] V. Gauvreau and G. Laroche: Bioconjug Chem Vol. 16 (2005), pp.1088-97.

Google Scholar

[11] L. Gagne, G. Rivera and G. Laroche: Biomaterials Vol. 27 (2006), pp.5430-9.

Google Scholar

[12] C. Sarra-Bournet, G. Ayotte, S. Turgeon, F. Massines and G. Laroche: Langmuir Vol. 25 (2009), pp.9432-40.

DOI: 10.1021/la900652y

Google Scholar

[13] V. Gauvreau, P. Chevallier, K. Vallieres, E. Petitclerc, R.C. Gaudreault and G. Laroche: Bioconjug Chem Vol. 15 (2004), pp.1146-56.

Google Scholar

[14] K. Vallieres, E. Petitclerc and G. Laroche: Macromol Biosci Vol. 7 (2007), pp.738-45.

Google Scholar

[15] L.A.L. Gagne, G.: Advanced Materials Research Vol. 15-17 (2007), pp.77-82.

Google Scholar

[16] W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, http: /rsb. info. nih. gov/ij/, 1997-(2009).

Google Scholar