On the Influence of Carbon Nanotubes and Processing on Tensile Response and Fracture Behavior of a Magnesium Alloy

Article Preview

Abstract:

Carbon nanotube (CNT) reinforced magnesium alloy (AZ31)-based composite was fabricated using the technique of solidification processing followed by hot extrusion. In this paper is presented and briefly discussed the conjoint influence of reinforcement and processing on microstructural development, microhardness, tensile deformation and final fracture behavior of the magnesium alloy composite and comparisons made with the unreinforced alloy (AZ31). The interactive influences of the CNT reinforcement and processing in governing engineering stress versus engineering strain response and tensile properties is neatly presented and discussed. The macroscopic fracture mode and intrinsic microscopic mechanisms governing quasi-static deformation and fracture behavior of both the CNT reinforced and unreinforced magnesium alloy is both elaborated and rationalized in light of the specific role played by presence of reinforcing phase in the magnesium alloy metal matrix, intrinsic microstructural effects and nature of loading.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-141

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Donald R. Askeland, Pradeep P. Fulay and Wendelin J. Wright: The Science and Engineering of Materials (Sixth Edition), CENGAGE Learning, Boston, MA, USA, (2011).

Google Scholar

[2] Magnesium Die Casting Handbook, NADACA, New York, USA, (1998).

Google Scholar

[3] M.M. Avedesian and H. Baker (editors): ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Materials Park, Ohio, USA, (1999).

Google Scholar

[4] T.S. Srivatsan, T.S. Sudarshan and E.J. Lavernia: Progress in Materials Science: An International Review Journal, Vol. 39, No. 4/5 (1995), pp.317-409.

Google Scholar

[5] T.S. Srivatsan, T.S. Sudarshan, Rapid Solidification Technology: An Engineers Guide, Technomic Publishing Company, Lancaster, PA, 1993, p.603–720.

Google Scholar

[6] T.S. Srivatsan, Satish Vasudevan, M. Petraroli: Journal of Alloys and Compounds Vol. 461, (2008), p.154–159.

Google Scholar

[7] T. S. Srivatsan, and R. Annigeri: Metallurgical and Materials Transactions, Vol. 31A (2000), pp.959-974.

Google Scholar

[8] T.S. Srivatsan, Meslet Al-Hajri, P.C. Lam: Composites: Part B, Vol. 36 (2005), p.209–222.

Google Scholar

[9] S. Seshan, M. Jayamathy, S.V. Kailas, T.S. Srivatsan: Materials Science and Engineering A, Vol. 363 (2003), pp.345-351.

DOI: 10.1016/s0921-5093(03)00621-x

Google Scholar

[10] K.F. Ho, M. Gupta, T.S. Srivatsan: Materials Science and Engineering A, Vol. 369 (2004), p.302–308.

Google Scholar

[11] M. Paramsothy, J. Chan, R. Kwok, M. Gupta: Journal of Alloy and Composites, Vol. 509 (2011) pp.7572-7578.

Google Scholar

[12] M. Paramsothy, S. F Hasan, N. Srikanth, M. Gupta: Material Science and Engineering A, Vol. 527 (2009), pp.162-168.

Google Scholar

[13] Wang Ji-jie, Guo Jin-hua, Chen Li-qing: Trans. Nonferrous Met. Soc. China, Vol. 16 (2006), pp.892-896.

Google Scholar

[14] C S Goh, J Wei, L C Lee and M. Gupta: Nanotechnology, Vol. 17 (2006) , p.7–12.

Google Scholar

[15] S K Thakur, T.S. Srivatsan, M. Gupta: Materials Science and Engineering A , Vol. 466 (2007), p.32–37.

Google Scholar

[16] M.K. Habibi, M. Paramsothy, A.M.S. Hamouda, M. Gupta: Journal of Materials Science , Vol. 46 (2011), pp.4588-4597.

Google Scholar

[17] M. Paramsothy, M. Gupta, Jimmy Chan, Richard Kwok: Materials Sciences and Applications, Vol. 2 (2011), pp.20-29.

Google Scholar

[18] M. Paramsothy, S.F. Hassan, N. Srikanth and M. Gupta.: Composites Part A: Applied Science and Manufacturing: Vol. 40, Issue 9 (2009), pp.1490-1500.

Google Scholar

[19] S Liu, F Gao, Q Zhang, X Zhu, W Li: Trans. Nonferrous Met. Soc. China Vol. 20 (2010), pp.1222-1227.

Google Scholar

[20] H. Fukuda, K. Kondoh, J. Umeda, B. Fugetsu: Composites Science and Technology, Vol. 71 (2011), p.705–709.

Google Scholar

[21] M. Paramsothy, S.F. Hasan, N. Srikanth and M. Gupta: Journal of Nanoscience and Nanotechnology, Vol. 10, 2010, pp.956-964.

Google Scholar

[22] M. Paramsothy, J. Chan, R. Kwok and M. Gupta: Composites: Part A, Vol. 42, 2011, pp.180-189.

Google Scholar

[23] L.M. Tham, M. Gupta, L. Cheng: Materials Science Technology, Vol. 15 (1999), pp.1139-1146.

Google Scholar

[24] M. Gupta, M.O. Lai, S.C. Lim: Journal of Alloys and Compounds. Vol. 260 (1997), pp.250-255.

Google Scholar

[25] M. Gupta and T. S. Srivatsan: Journal of Materials Engineering and Performance, Vol. 8, No. 4 (1999), pp.473-478.

Google Scholar

[26] P.S. Ling, M. Gupta, M.O. Lai and T.S. Srivatsan: ALUMINUM Transactions: An International Journal, Vol. 2, No. 2 (2000), pp.209-215.

Google Scholar

[27] V. V. Ganesh, M. Gupta, and T. S. Srivatsan: Journal of Recent Research Developments in Materials Science and Engineering, ISBN: 81-7895-057-X, pp.119-136, (2002).

Google Scholar

[28] M. Marya, L. G. Hector, R. Verma, and W. Tong: Materials Science and Engineering A, Vol. 418 (2006), p.341–356.

Google Scholar

[29] Q.B. Nguyen, M. Gupta: Journal of Alloys and Compounds, Vol. 459 (2008), p.244–250.

Google Scholar