Study on the Effect of Thickness on Structural and Optical Properties of Nanocrystalline Bismuth Ferrite (BiFeO3) Thin Films

Article Preview

Abstract:

Nanocrystalline Bismuth ferrite (BiFeO3) thin films of different thickness were deposited on glass substrates using sol-gel processing technique. The effect of thickness on structural and optical properties of BiFeO3 thin films has been studied. The as-fired films were found to be amorphous that crystallized to hexagonal structure after annealing at 500°C for 2hr in air. The XRD pattern shows that the samples are polycrystalline in structure. At low annealing temperature (400°C), the thick film samples show amorphous in nature while thinner film shows some crystallinity with the presences of impurity phases. At high annealing temperature, all the samples show single phase distorted perovskite BiFeO3 structure. The AFM photograph reveals that there is an increase in the grain size with the increase in film thickness. Optical transmittance spectra shows that, with the increase in film thickness, there is a decrease in transmittance (T%). Further, it is observed that increase in film thickness would lead to the decrease in optical energy band gap of the samples. The effect of thickness on the photoluminescent properties of BiFeO3 films have also been studied for their possible application in nanoscale optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-147

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. -M. Liu, Z. G. Liu: Appl. Phys. Lett. Vol. 84(2004), p.1731.

Google Scholar

[2] C. Tabares-Munoz, J. P. Rivera, A. Monnier, H. Schmid: Jpn. J. Appl. Phys., Vol. 24 (1985), p.1051.

Google Scholar

[3] P. Fischer, M. Polomska, I. Sosnowska, M. Szymanksi: J. Phys. C Vol. 13(1980), p. (1931).

Google Scholar

[4] J. Choi, J. D. Woodward, J. L. Musfeldt, X. Wei, M. H. Whangbo, J. He, R. Jin, and D. Mandrus: Phys. Rev. B Vol. 70 (2004), p.085107.

Google Scholar

[5] J. Cao, J. T. Haraldsen, R. C. Rai, S. Brown, J. L. Musfeldt, Y. J. Wang, X. Wei, M. Apostu, R. Suryanarayanan, and A. Revcolevschi: Phys. Rev. B Vol. 74 (2006), p.045113.

Google Scholar

[6] M. Fiebig: J. Phys. D Vol. 38 (2005), p.123.

Google Scholar

[7] X. S. Xu, M. Angst, T. V. Brinzari, R. P. Hermann, J. L. Musfeldt, A. D. Christianson, D. Mandrus, B. C. Sales, S. McGill, J. W. Kim, and Z. Islam: Phys. Rev. Lett. Vol. 101 (2008), p.227602.

Google Scholar

[8] K. Takahashi, N. Kida, M. Tonouchi: Phys. Rev. Lett. Vol. 96 (2006), pp.117-402.

Google Scholar

[9] F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, J. -M. Liu, Z. F. Ren: Appl. Phys. Lett. Vol. 89 (2006), p.102506.

Google Scholar

[10] V. R. Palker, J. John, and R. Pinto: Appl. Phys. Letter, Vol. 80 (2002), p.1628.

Google Scholar

[11] Y. W. Li, J. L. Sun, J. Chen, X. J. Meng, and J, H, Chu: Appl. Phys. Letter Vol. 87 (2005), p.182902.

Google Scholar

[12] S. Lakovlev, C. H. Solterbeck, M. Kuhnke, and M. Es-Souni: J. Appl. Phys. Vol. 97 (2005), p.094901.

Google Scholar

[13] M. K. Singh, R. S. Katiyar, and J. F. Scott: J. Phys. Condens. Matter, Vol. 20 (2008), p.252203.

Google Scholar

[14] X. H. Xiao, J. Zhu, Y. R. Li, W. B. Luo, B. F. Yu, L. X. Fan, F. Ren, C. Liu and C. Z. Jiang: J. Phys. D: Appl. Phys. Vol. 40 (2007), p.5775.

Google Scholar

[15] T. Sakoda, T. Moise, S. Summerfelt, L. Colombo, G. Xing, S. Gilbert, A. Loke, S. Ma, R. Kavari, L. Wills, J. Amano: Jpn. J. Appl Phys. Vol. 20 (2001), pp.2911-2916.

DOI: 10.1143/jjap.40.2911

Google Scholar

[16] M. Alexe, C. Harnagea, D. Hesse, U. Gösele: Appl. Phys. Lett. Vol. 79 (2001), p.242.

Google Scholar

[17] J. H. Kim, H. Funakubo, Y. Sugiyama, H. Ishiwara: Current Applied Physics, (2010), doi: 10. 1016/j. cap. 2010. 11. 062.

Google Scholar

[18] L. Hongri, L. Zuli, L. Qing, and Y Kailun: J. Phys. D: Appl. Phys. Vol. 39 (2006), p.1022.

Google Scholar

[19] B.D. Cullity, Elements of X-ray Diffraction, second ed., Addison, Wesley, Reading, MA, 1978, 1866.

Google Scholar

[20] J Callaway, Quantum Theory of the Solid State, (Academic, New York, 1974).

Google Scholar

[21] F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, and J-M. Liu: Adv. Mater. Vol. 19 (2007), p.2889.

Google Scholar

[22] L. Bi, A. R. Taussig, H-S. Kim, L. Wang, G. F. Dionne, D. Bono, K. Persson, G. Ceder, and C. A. Ross: Physical Review B Vol. 78 (2008), p.104106.

Google Scholar

[23] S. R. Basu, L.W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt: Appl. Phys. Lett. Vol. 92 (2008), p.091905.

DOI: 10.1063/1.2887908

Google Scholar

[24] J. C. Manifacier, J. Gasiot and J. P. Fillard: J. Phys. E. Vol. 9 (1976), p.1002.

Google Scholar