Barium Zirconium Titanate Powders Prepared by Sol–Gel Method

Article Preview

Abstract:

Barium zirconium titanate, Ba (Zr0.20Ti0.80)O3 (BZT) powders were prepared by sol-gel method. These powders were characterized by thermal gravimetric and differential thermal gravimetric analysis (TG-DTA), X-ray diffraction (XRD). The grain size and lattice constant were determined. The decomposition of the precursors was monitored by TG-DTA. XRD patterns reveal that BZT powders heat-treated at 800°C present single phase with perovskite type cubic structure. The average particle size of the BZT powders is about 25 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-89

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Li, Z.J. Xu., R.Q. Chu, et al.: J. Alloys Compd. Vol. 482 (2009), p.137.

Google Scholar

[2] X.H. Zhu, Z.H. Zhang, J.M. Zhu, et al.: J. Cryst Growth. Vol. 311 (2009), p.2437.

Google Scholar

[3] H. Maie, B.I. Lee. J. Mater. Sci.: Mater. Electron. Vol. 20(2009), p.619.

Google Scholar

[4] J.B. Xu, J.W. Zhai, X. Yao . J. Alloys Compd. Vol. 467(2009), p.567.

Google Scholar

[5] L. Wu, M.C. Chure, K.K. Wu, et al.: Ceram. Int. Vol. 35(2009), p.957.

Google Scholar

[6] S.J. Kuang, X.G. Tang, L.Y. Li, et al.: Scr. Mater. Vol. 61 (2009), p.68.

Google Scholar

[7] V. Vinothini, B. Vaidhyanathan, J. Binner, J. Mater. Sci. Vol. 46(2011), p.2155.

Google Scholar

[8] D.Y. Wang, P. Yun, Y. Wang, et al.: Thin Solid Films. Vol. 517(2009), p. (2092).

Google Scholar

[9] L.S. Cavalcante, M. Anicete-Santos, et al.: J. Alloys Compd. Vol. 437(2007), p.269.

Google Scholar

[10] L.G.A. Marques, L.S. Cavalcante, et al.: Mater. Chem. Phys. Vol. 105(2007), p.293.

Google Scholar

[11] J.W. Zhai, D. Hu, X. Yao, Z.K. Xu, H. Chen. (2006) J Eur Ceram Soc 26: 1917–(1920).

Google Scholar

[12] e L.S. Cavalcant, M. Anicete-Santos, et al.: J. Phys. Chem. Solids. Vol. 69(2008), p.1782.

Google Scholar

[13] W. Cai, C.L. Fu, J.C. Gao, et al.: J. Alloys Compd. Vol 480(2009), p.870.

Google Scholar

[14] S. Mahajan, O.P. Thakur, D.K. Bhattacharya, et al.: J. Am. Ceram. Soc. Vol 92(2009), p.416.

Google Scholar

[15] W. Cai, C.L. Fu, J.C. Gao, et al.: J. Mater. Sci.: Mater. Electron. Vol 21(2009), p.317.

Google Scholar

[16] S.M. Ke, H.Q. Fan, H.T. Huang, H.L.W. Chan. Appl. Phys. Lett. Vol. 93(2008), p.112906.

Google Scholar

[17] P. Zheng, J. L Zhang., S.F. Shao, et al.: Appl. Phys. Lett. Vol. 94(2009), p: 032902.

Google Scholar

[18] X.G. Tang, J. Wang, X.X. Wang, et al.: Solid State Commun. Vol. 131(2004), p.163.

Google Scholar

[19] S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, et al.: Physica. B. Vol. 404(2009), p.3341.

Google Scholar

[20] L.S. Cavalcante, J.C. Sczancoski, et al.: J. Sol-Gel Sci. Techn. Vol. 49(2009), p.35.

Google Scholar

[21] X.Y. Chen, W. Cai, C.L. Fu, et al.: J. Sol-Gel Sci. Technol. Vol. 57(2011), p.149.

Google Scholar

[22] J.B. Xu, C. Gao, J.W. Zhai, et al.: J. Cryst. Growth. Vol. 291(2006), p.130.

Google Scholar

[23] L.S. Cavalcante, M.F.C. Gurgel, E.C. Paris, et al.: Acta. Mater. Vol. 55(2007), p.6416.

Google Scholar

[24] A.Y. Liu, J.Q. Xue, X.G. Meng, et al.: Appl. Surf. Sci. Vol. 254(2008), p.5660.

Google Scholar

[25] T. Badapanda, S.K. Rout, et al.: J. Phys. D. Appl. Phys. Vol 42(2009), p.175414.

Google Scholar

[26] M. Veith, S. Mathur, N. Lecerf, et al.: J. Sol-Gel Sci. Techn. Vol. 17 (2000), p.145.

Google Scholar

[27] X.G. Tang, K.H. Chew, H.L.W. Chan. Acta. Mater. Vol. 52(2004), p.5177.

Google Scholar

[28] B.W. Lee, S.B. Cho. J. Eur. Ceram. Soc. Vol. 25(2005), p. (2009).

Google Scholar

[29] A. Outzourhit, M.A.E. Raghni, M.L. Hafid. J. Alloys Compd. Vol. 340(2005), p.214.

Google Scholar

[30] S.B. Reddy, K.P. Rao, M.S.R. Rao. Scr. Mater. Vol. 57(2007), p.591.

Google Scholar