Synthesis of Multiferroic BiFeO3 Powders by Sol-Gel Auto-Combustion

Article Preview

Abstract:

Crystalline multiferroic BiFeO3 powders were directly synthesized by sol-gel auto-combustion method. The gels, derived from the solutions of 2-methoxyethane, metal nitrate and citric acid, exhibited the self-propagating combustion behaviors at ambient temperature when it is ignited in air. After auto-combustion, the dried gels transformed into crystalline BiFeO3 powders and no further calcination was needed. The nature of auto-combustion was ascribed to heat-induced redox between NH4NO3 and carboxyl group. The TG-DTA was carried out to study the auto-combustion of dried gels. The synthesized powders were characterized by XRD and SEM techniques.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-102

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Curie: J. de Physique Vol. 3 (1894), P. 393.

Google Scholar

[2] J. F. Scott: Nat. Mater. Vol. 6 (2007), P. 256.

Google Scholar

[3] E. Fischer, G. Gorodetsky and R. M. Hornreich: Solid State Commun. Vol. 10 (1972), P. 1127.

Google Scholar

[4] N. A. Hill: J. Phys. Chem. B Vol. 104 (2000), P. 6694.

Google Scholar

[5] X. D. Qi, M. Wei, Y. Lin, et al.: Appl. Phys. Lett. Vol. 86 (2005), P. 071913.

Google Scholar

[6] H. Schmid: Ferroelectrics Vol. 221 (1999), P. 9.

Google Scholar

[7] G. L. Song, T. X. Wang, C. J. Xia, et al.: Adv. Mater. Vol. 150-151 (2011), P. 1470.

Google Scholar

[8] Y. Wang and C. W. Nan: Thin Solid Films Vol. 517 (2009), P. 4484.

Google Scholar

[9] N. A. Hill and A. Filippetti: J. Magn. Magn. Mater. Vol. 242-245 (2002), P. 976.

Google Scholar

[10] C. Michel, J. M. Moreau, G. D. Achenbach, et al.: Solid State Commun. Vol. 7 (1969), P. 701.

Google Scholar

[11] G. D. Achenbach, W. J. James and R. Gerson: J. Am. Ceram. Soc. Vol. 8 (1967), P. 437.

Google Scholar

[12] M. M. Kumar, V. R. Palkar, K. Srinivas, et al.: Appl. Phys. Lett. Vol. 76 (2000), P. 2764.

Google Scholar

[13] V. F. Freitas, H. L. C. Grande, S. N. de Medeiros, et al.: J. Alloys. Compd. Vol. 461 (2008), P. 48.

Google Scholar

[14] D. C. Jia, J. H. Xu, H. Ke, et al.: J. Euro. Ceram. Soc. Vol. 29 (2009), P. 3099.

Google Scholar

[15] T. J. Park, G. C. Papaefthymiou, A. J. Viescas, et al.: Nano. Lett. Vol. 7 (2007), P. 766.

Google Scholar

[16] J. M. Xu, G. M. Wang, H. X. Wang, et al.: Mater. Lett. Vol. 63 (2009), P. 855.

Google Scholar

[17] F. G. Garcia, C. S. Riccardi and A. Z. Simoes: J. Alloys. Compd. Vol. 501 (2010), P. 25.

Google Scholar

[18] Q. H. Jiang, C. W. Nan and Z. J. Shen: J. Am. Ceram. Soc. Vol. 89 (2006), P2123.

Google Scholar

[19] X. B. He and L. Gao: Ceram. Int. Vol. 35 (2009), P. 975.

Google Scholar

[20] Y. Q. Zheng, G. Q. Tan, H. Y. Miao, et al.: Mater. Lett. Vol. 65 (2011), P. 1137.

Google Scholar

[21] S. H. Han, K. S. Kim, H. G. Kim, et al.: Ceram. Int. Vol. 36 (2010), P. 1365.

Google Scholar

[22] H. Ke, W. Wang, Y. B. Wang, et al.: J. Alloys. Compd. Vol. 509 (2011), P. 2192.

Google Scholar

[23] J. T. Wu. S. Y. Mao, Z. G. Ye, et al.: J. Mater. Chem. Vol. 20 (2010), P. 6512.

Google Scholar

[24] Y.P. Wang, L. Zhou, M. F. Zhang, et al.: Appl. Phys. Lett. Vol. 84 (2004), P. 1731.

Google Scholar

[25] Z. X. Yue, J. Zhou, L. T. Li, et al.: J. Magn. Magn. Mater. Vol. 308 (2000), P. 55.

Google Scholar