Thermoelectric Properties of BaxCo4Sb12 Prepared by High Pressure and High Temperature

Article Preview

Abstract:

Polycrystalline filled Skutterudite compounds BaxCo4Sb12 (0-x-0.5) are synthesized by high pressure and high temperature (HPHT) technique. The thermal conductivity for CoSb3 is depressed significantly by Ba-filling combined HPHT technique. The value of 1.25 Wm-1 K-1 for Ba0.372Co4Sb12 is obtained at 633K. The dimensionless thermoelectric figure of merit ZT, increases with temperature increasing and reaches a maximal value of 1.01 at 663 K.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1615-1619

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.J. DiSalvo, Science 285 (1999) 703–706.

Google Scholar

[2] See, for example D.M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, New York,(1995).

Google Scholar

[3] Go Nakamoto, Yuima Yoshida, et al. Effect of segregated impurity phases on lattice thermal conductivity in Y-added CoSb3 [J]. Scripta Materialia, 56(2007)269-272.

DOI: 10.1016/j.scriptamat.2006.10.023

Google Scholar

[4] V. L. Kuznetsov, L. A. Kuznetsova, and D. M. Rowe, J. Phys.: Condens. Matter 15 (2003)5035.

Google Scholar

[5] G. A. Lamberton, Jr., S. Bhattacharya, R. T. Littleton IV, M. A. Kaeser, R. H. Tedstrom, T. M. Tritt, J. Yang, and G. S. Nolas, Appl. Phys. Lett. 80(2002)598.

DOI: 10.1063/1.1433911

Google Scholar

[6] G. S. Nolas, M. Kaeser, R. T. Littleton IV, and T. M. Tritt, Appl. Phys. Lett.77 (2000)1855.

Google Scholar

[7] Kenya Tanka, Yuko Sekihara, et al. Effect of rare earth filling on unfilled skutterudite compound CoSb3 [J]. J.Magnetism and Magnetic Materials, 310(2007)1715-1717.

DOI: 10.1016/j.jmmm.2006.10.544

Google Scholar

[8] G. S. Nolas, G. A.Slack, et al. The effect of rare-earth filling on the lattice thermal conductivity of skutterudites [J]. J Appl Phys, 79(1996) 4002-4008.

DOI: 10.1063/1.361828

Google Scholar

[9] Y.Z. Pei, L.D. Chen, S.Q. Bai, X.Y. Zhaoa, and X.Y. Lia Scripta Materialia 56 (2007) 621-624.

Google Scholar

[10] L.D. Chen, T.Kawahara, X.F. Tang, T.Goto, and T.Hirai Journal of applied physics Vol.90 Number4 (2001).

Google Scholar

[11] Y.Z. Pei1, S.Q. Bai1, X.Y. Zhao, W. Zhang, L.D. Chen Solid State Sciences 10 (2008) 1422-1428.

Google Scholar

[12] J.F. Meng, D.A. Polvani, C.D. Jones, et al., Chem. Mater. 12 (2000) 197.

Google Scholar

[13] D.A. Polvani, J.F. Meng, N.V. Chandra Shekar, et al., Chem. Mater. 13 (2001) 2068.

Google Scholar

[15] J.-P. Fleurial*, T. Caillat and A. Borshchevsky Proceedings of the XVI International Conference on Thermoelectric, I)resden, Germwry, August, (1997) 26-29.

Google Scholar

[16] Hirotsugu Takizawa, Keiichi Miura, Masayuki Ito, Tsutomu Suzuki, Tadashi Endo. Journal of Alloys and Compounds 282 (1999) 79–83.

Google Scholar

[17] V. Zlatić, R. Monnier, and J. K. Freericks Phys rev B 78 (2008)045113.

Google Scholar

[18] X. Shi, W. Zhang, L. D. Chen, J. Yang, and C. Uher Phys rev B 75(2007)235208.

Google Scholar