Impedance Spectroscopy Analysis of p Type Li Doped ZnO Thin Film Effect

Article Preview

Abstract:

Impedance spectroscopy technique was employed to characterize the LixZn1-xO2 (x=0.001~0.008) polycrystalline thin film. IS is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries resistance to the complex impedance of a compound, accurately estimating its electrical conductivity as well as its corresponding activation energies and conclude on its structural properties. This is demonstrated for the case of lithium segregation in the grain/grain boundary of LixZn1-xO2., we found that the activation energy decrease associated with grain-boundary conductivity reflects the onset of the segregation of excessive Li in the grain boundaries when the Li-content exceeds 0.5 mol%. For Li-content below 0.5mol% is the detection of a transition from p-type conductivity. It might be due to that the Li+ doped mainly in grains and no precipitation observed on the grain boundaries. So we could be process stable p type thin film for Li content below 0.5mol%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

1925-1932

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Barsoukov and J. R. Macdonald, Wiley, New York, 2005 2nd ed., p.205.

Google Scholar

[2] A. R. West, D. C. Sinclair, and N. Hirose, J. Electroceram. 65-71, (1997)

Google Scholar

[3] Lucjan Kozielski, Malgorzata Adamczyk, Nora Schreithofer, Wataru Sakamoto and Roman Nowak, Jpn. J. Appl. Phys., 47, 2176–2181 (2008).

Google Scholar

[4] B. Xiao, Z. Ye, Y. Zhang, Y. Zeng, L. Zhu, B. Zhao, Appl. Surf. Sci., 253, 895-7 (2006).

Google Scholar

[5] M. Joseph, H. Tabata and T. Kawai, Appl. Phys. Lett., 74, 2534-36 (1999).

Google Scholar

[6] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L. Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, and Y. L. Hu, J. Cryst. Growth, 283, 180-4 (2005).

Google Scholar

[7] F. Chaabouni, M. Abaab and B. Rezig, Superlattices, 39, 171-8 (2006).

Google Scholar

[8] Z. C. Jin, I. Hamberg, and C. G. Grangvist, J. Appl. Phys., 64, 5117-31 (1988).

Google Scholar

[9] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett., 81, 1830-2 (2002).

Google Scholar

[10] K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park, Appl. Phys. Lett., 83, 63-5 (2003).

Google Scholar

[11] Y. R. Ryu, T.S. Lee, and H. W. White, Appl. Phys. Lett., 83, 87-9 (2003).

Google Scholar

[12] K, C. Chiu, Y. W. Kao and J. H. Jean, J. Am. Ceram. Soc., 93 [7] 1860-62 (2010).

Google Scholar

[13] K, C. Chiu and J. H. Jean, J. Am. Ceram. Soc., Article first published online : 25 MAY 2011.

Google Scholar

[14] S. M. Selbach, M. Einarsrud, T. Tybell, and T. Grande, J. Am. Ceram. Soc., 90, 3430-4 (2007).

Google Scholar

[15] S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, J. Am. Ceram. Soc., 88, 1349-52 (2005).

Google Scholar

[16] S. H. Chung, K. C. Chiu, and J. H. Jean, Jpn. J. Appl. Phys., 47, 8498-501 (2008).

Google Scholar

[17] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd edition, John Wiley & Sons, New York, 1991, 58pp. Table I Electrical properties of Li-doped ZnO films deposited from the targets with 0.1-0.8 mol% Li Fig 1. Results of impedance measurements for Li doped in ZnO film illustrated for (a) 0.1mol%, (b) 0.5mol% and (c) 0.8mol% Li doped at various temperatures. Fig 2. The example of impedance plot with CNLS fitting to the equivalent circuit Fig 3. Variations of grain-boundary resistance (Rgb) (a) and grain capacitance (Cgb) (b) with Li doped in ZnO film at various temperatures. Fig 4. Changes in activation energy of grains and grain boundaries in Li-doped ZnO film. Fig 5. Secondary ion count (SIC) detected by SIMS as a function of Li content in the target (LI). Fig 6. Li content in the films deposited from the target with 0.1-0.8 mol% Li at substrate temperatures of 25oC, a sputtering power of 300 W, and an Ar flow rate of 30 cm3/min. Fig 7. X-ray diffraction patterns of the LixZn1-xO2 with (a) 0.1 mol%, (b) 0.5 mol%, (c) 0.8 mol% Li doped in ZnO target Fig 8. SEM microstructure of the films deposited from the target with (a) 0.1 mol% Li , (b) 0.5 mol% Li and (c) 0.8 mol% Li

Google Scholar