Synthesis and Stabilization of BaTiO3/CoFe2O4 Ferrocolloids

Article Preview

Abstract:

In this article, nanocomposites of BaTiO3/CoFe2O4 have been prepared by sol-gel technique. The samples have been calcined at various temperatures ranging from 500 to 900 °C and then the microstructure of the composite nano-particles was studied. XRD, SEM analysis showed the powders can form the two phase composite system of BaTiO3 and CoFe2O4 and the average particle size of the crystalline phases is 50nm at sintering temperature of 800 °C. In addition, we have studied the effects of different solvents and mixed solvents on the stability of the nanocomposites suspensions. Results of sediment volumes and conductivity showed under ultrasonic agitation for at least 25 min, suspensions of the BaTiO3/CoFe2O4 in ethanol-acetylacetone (1:1 in volume) were most stable (the sediment volumes is 0.6cm3/0.4g, the conductivity is 9μS/cm). Electrophoretic deposition (EPD) was utilized for preparation of magnetoelectric (ME) composite films, the impact of deposition time and deposition voltage on electrophoretic deposition process was investigated. The obtained ME composite films exhibited good ferroelectric and ferromagnetic properties, which can meet the demand of ME devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

362-367

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Schmid: Ferroelectrics. Vol.162 (1994) p.317

Google Scholar

[2] M. Fiebig: J. Phys. D. Forum Vol. 38 (2005) p.123

Google Scholar

[3] W. Eerenstein, N. D. Mathur, and J. F. Scott: Nature. Vol. 442 (2006) p.759

Google Scholar

[4] M. Bichurin, Novgorod: Ferroelectrics. (2002) p.279–280

Google Scholar

[5] C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan: J. Appl. Phys. Vol. 103 (2008) p.031101

Google Scholar

[6] J.X. Zhang, J.Y. Dai, H.L.W. Chan, B. Wu, D.X. Li: J. Phys. D. Vol. 41 (2008) p.235405

Google Scholar

[7] H.C. He, J. Ma, J. Wang, C.W. Nan: J. Appl. Phys. Vol. 103 (2008) p.034103

Google Scholar

[8] S.H. Xie, J.Y. Li, Y. Qiao, Y.Y. Liu, L.N. Lan, Y.C. Zhou, S.T. Tan: Appl. Phys. Lett. Vol. 92 (2008) p.062901

Google Scholar

[9] A.R. Iordan, M. Airimioaiei, M.N. Palamaru, C. Galassi, A.V. Sandu, C.E. Ciomaga, F. Prihor, L.Mitoseriu, A. Ianculescu, J. Eur. Ceram: Soc. Vol. 29 (2009) p.2807

DOI: 10.1016/j.jeurceramsoc.2009.03.031

Google Scholar

[10] T. Kanai, S. Ohkoshi, K. Hashimoto: J. Phys. Chem. Solids. Vol. 64 (2003) p.391

Google Scholar

[11] G. Srinivasan, V.M. Laletsin, R. Hayes, N. Puddubnaya, E.T. Rasmussen, D.J. Fekel: Solid State Comm. Vol. 124 (2002) p.373

DOI: 10.1016/s0038-1098(02)00628-2

Google Scholar

[12] H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, R. Ramesh: Science. Vol. 03 (2004) p.661

DOI: 10.1126/science.1094207

Google Scholar

[13] S. Mazumder, G.S. Battacharyya: Mater. Res. Bull. Vol. 38 (2003) p.303

Google Scholar

[14] I. Zhitomirsky: Advances in Colloid and Interface Science. Vol. 97 (2002) pp.279-317

Google Scholar

[15] P. Sarkar, P.S. Nicholson, J. Am. Ceram: Soc. Vol. 79 (2006) p. (1987)

Google Scholar

[16] C. Ji, W. Lan, P. Xiao, J. Am. Ceram: Soc. Vol. 91 (2009) p.1102

Google Scholar

[17] S.J. Limmer, G. Cao: Adv. Mater. Vol.15 (2003) p.427

Google Scholar

[18] Dongxiang Zhou, Gang Jian, Yunxiang Hu, Yanan Zheng, Shuping Gong, Huan Liu: Materials Chemistry and Physics. Vol.127 (2011) p.316–321

Google Scholar

[19] Dongxiang Zhou, Gang Jian, Yanan Zheng, Shuping Gong, Fei Shi: Applied Surface Science. Vol. 257 (2011) p.7621–7626

Google Scholar