Effects of Pd and Ni Metals Electrolessly Deposited on Si Nanowires on Properties of Photoelectrochemical Solar Cell

Article Preview

Abstract:

A photoelectrochemical solar cell with a structure of modified Si nanowire anocle/K4Fe(CN)6+ K3Fe(CN)6/Pt cathode was prepared and studied. The Si nanowires were first formed by immersing n-Si chip in an etching solution of HF + AgNO3 and Pd and Ni metals were electrolessly deposited on the surface of Si nanowires. The modified anode was characterized by a scanning electron microscope for the surface and cross section view, and by an X-ray diffractometer for the phase and structure. The properties of the photoelectrochemical solar cell were measured under standard AM 1.5 simulated sunlight (100mW/cm2). The results showed that the total photoelectron conversion efficiency of the photoelectrochemical solar cell can be slightly increased when the Si nanowire anode was deposited with Pd metal, and can be greatly increased when deposited with Ni metal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

686-689

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Licht, Nature 300 (1987)148.

Google Scholar

[2] S.Yae, M. Kitagaki, T. Hagihara, Y. Miyoshi, H. Matsuda, B. A. Parkinson and Y. Nakato, Electrochemical Acta 47 (2001) 345.

DOI: 10.1016/s0013-4686(01)00582-5

Google Scholar

[3] Das V. Damodara and D. Laxmikant, Solid State Commun. 103 (1997) 173.

Google Scholar

[4] D. Cahen, A. Kisilev, V. Marcu, H. W. Schock and R. Noufi, Conf. Rec. IEEE PhotoVoltaic Spec. Conf. 2 (1998) 1437.

Google Scholar

[5] S. Mishra, S. Tiwari and B.P. Chandra, .Sol. Energ. Mater. Sol. cells 37 (1995) 133

Google Scholar

[6] J.M. Spurgeon, H.A. Atwater and N.S. Lewis, J. Phys. Chem. C 112 (2008) 6186.

Google Scholar

[7] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben, Nature 386 (1997) 377.

DOI: 10.1038/386377a0

Google Scholar

[8] W.U. Huynh, J.J. Dittmer and A.P. Alivisatos, Science 295 (2002) 2425.

Google Scholar

[9] K.Q. Peng, X. Wang and S.T. Lee, Appl Phys Lett 92 (2008) 163103

Google Scholar

[10] R.L. Woo, R. Xiao, Y. Kobayashi, L. Gao, N. Goel, M. Hudait, T.E. Mallouk and R.F. Hicks, Nano Letters 8 (2008) 4664.

Google Scholar

[11] M. Thzmbidurai, N. Muthukumarasamy, N. Sabari Arul, S. Agilan and R. Balasundaraprabhu, J. Nanopart. Res. 13 (2011) 3267.

DOI: 10.1007/s11051-011-0241-2

Google Scholar

[12] S. Licht, Solar Energy Materials and solar cells 38 (1995) 305.

Google Scholar

[13] A. Mondal and P. Pramanik, Extended Abstracts, Meeting-International Society of Electrochemistry 35th (1984) 179.

Google Scholar

[14] E.A. Dalchiele, F. Martín, D. Leinen, R.E. Marotti and J.R. Ramos-Barrado, Thin Solid Films 518 (2010) 1804.

DOI: 10.1016/j.tsf.2009.09.037

Google Scholar

[15] S. Yae, I. Nakanishi, Y. Nakato, N. Toshima and H. Mori, J Electrochem Soc 141 (1994) 3077.

Google Scholar