Manufacture and Characterization of TiO2 Nanowires by CVD

Article Preview

Abstract:

Under the catalysis of Co metal, the nanosized titania could be grown on Ti substrate at elevated temperature under a gas mixture of N2, O2, CH4 , and H2O. The nanosized titania was characterized by scanning electron microscope for its morphology, and by an energy dispersion spectrometer for its composition. The results showed that the straight and long titania nanowire could be formed at 900°C under a gas mixture of N2, O2, and CH4. When H2O vapor was added to the gas mixture, the titania nanowire became somewhat curved. The tiania nanowire was oxygen deficient, i.e. TiO2-X.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 415-417)

Pages:

697-700

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda, S. Awatsu, J. Phys. Chem. B 107 (2003) 6586.

Google Scholar

[2] O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Adv. Mater. 15 (2003) 624.

Google Scholar

[3] O.K. Varghese., M. Paulose, K. Shankar, G.K. Mor, C.A. Grimes, J. Nanosci. Nanotechnol. 5 (2005) 1158.

Google Scholar

[4] M. Adachi, Y. Murata, I. Okada, Y. Yoshikawa, J. Electrochem. Soc. 150 (2003) G488.

Google Scholar

[5] D. Vorkapic, T. Matsoukas, J. Am. Ceram. Soc. 81 (1998) 2815.

Google Scholar

[6] M. He, L. Xu, X.L. Gu, Journal of Inorganic Materials, 23 (2008) 1236.

Google Scholar

[7] J.M. Wu, J. Cryst. Growth, 269 (2004) 347.

Google Scholar

[8] A. Matsuda, T. Matoda, T. Kogure, J. Sol Gel Technol. 31 (2004) 229.

Google Scholar

[9] C. Tekmen, A. Suslu, U. Cocen, Mater. Lett. 62 (2008) 4470.

Google Scholar

[10] C.C. Chung, T.W. Chung, C.K. Yang, Ind. Eng. Chem. Res. 47 (2008) 2301.

Google Scholar

[11] C. Richter, E. Panaitescu, R. Willey, J. Mater. Res. 22 (2007) 1624.

Google Scholar

[12] J. M. Macak; H. Tsuchiya; S, Berger, Chemical Physics Letters 428 (2006) 421.

Google Scholar

[13] Q. Chen, W.Z. Zhou, G.H. Du, L.H. Peng, Adv. Mater. 14 (2002) 1208.

Google Scholar

[14] J.H. Jung, H. Kobayashi, K.J.C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 14 (2002) 1445.

Google Scholar

[15] Z.R.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, H.F. Xu, J. Am. Chem. Soc. 125 (2003) 12384.

Google Scholar

[16] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14 (1998) 3160.

DOI: 10.1021/la9713816

Google Scholar

[17] Q. Chen, W.Z. Zhou, G.H. Du, L.H. Peng, Adv. Mater. 14 (2002) 1208.

Google Scholar

[18] B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, N. Wang, Appl. Phys. Lett. 82 (2003) 281

Google Scholar