Pd Nanocrystals-Embedded TiO2 Film Sandwiched Between Al2O3 Layers for Nonvolatile Memory Applications

Article Preview

Abstract:

Pd nanocrystals embedded in TiO2 film are formed in a self-assembly manner by rapid thermal annealing (RTA) of reactively co-sputtered TiPdO films. The cross-section transmission-electron microscopy (TEM) image and X-ray photoelectron spectra (XPS) reveal that the RTA at 800°C for 15 s results in the formation of Pd nanocrystals with an average size of around 10 nm. Further, the metal-oxide-semiconductor (MOS) capacitor with Pd-nanocrystals-embedded TiO2 film sandwiched between Al2O3 layers has been fabricated and characterized electrically in comparison with the counterpart without Pd nanocrystals, indicating that the formed Pd nanocrystals are dominant charge storage nodes. The fabricated MOS capacitor with Pd nanocrystals exhibits obvious memory characteristics, demonstrating a C-V hysteresis window of about 8.2 V at the sweeping voltage rang of +/-9 V, a flatband voltage shift of ~2V under a constant voltage stress of +9V for 10ns corresponding to a charge injection speed of 6×1012 cm-2μs-1. The underlying mechanisms of the memory characteristics under different C-V sweeps have also been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-145

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Choi, T. W. Kim, H. Yang, T. Lee, S. Jeon, C. Kim, and H. Hwang, IEDM Tech. Dig. (2005), p.173

Google Scholar

[2] H. C. You, T. H. Hsu, F. H. Ko, J. W. Huang, and T. F. Lei, IEEE Electron. Dev. Lett. Vol. 27 (2006), p.644.

Google Scholar

[3] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E.C. Kan, IEEE Trans. Electron. Dev. Vol. 49 (2002), p.1606.

Google Scholar

[4] H. Y. Gou, S. J. Ding, Y. Huang, Q. Q. Sun, D. W. Zhang, P. F. Wang, and Z. Chen, J. Electron. Mater. Vol. 39 (2010), p.1343.

Google Scholar

[5] K. S. Seol, S. J. Choi, J. Y. Choi et al., Appl. Phys. Lett. Vol. 89 (2006), p.083109.

Google Scholar

[6] B. Lim, M. Jiang, J. Tao et al., Adv. Funct. Mater. Vol. 19 (2009), p.189.

Google Scholar

[7] B. Lim, H. Kobayashi et al., Nano Res. Vol. 3 (2010), p.180.

Google Scholar

[8] G. L. Zhao, H. Kozuka, and S. Sakka, J. Sol-Gel Sci. Techn. Vol. 4 (1995), p.37.

Google Scholar

[9] T. Teranishi, H. Hori, and M. Miyake, J. Phys. Chem. B Vol. 101 (1997), p.5774.

Google Scholar

[10] P. J. Thomas, G. U. Kulkarni, and C. N. R. Rao, J. Phys. Chem. B Vol. 104 (2000), p.8138.

Google Scholar

[11] F. Silly, and M. R. Castell, J. Phys. Chem. B Vol. 109 (2005), p.12316.

Google Scholar

[12] J. Zhou, A. P. Baddorf, D. R. Mullins, and S. H. Overbury, J. Phys. Chem. C Vol. 112 (2008), P. 9336.

Google Scholar

[13] T. Dellwig, G. Rupprechter, H. Unterhalt, and H. J. Freund, Phys. Rev. Lett. Vol. 85 (2000), p.776.

Google Scholar

[14] Y. Q. Wang, J. H. Chen, W. J. Yoo et al., Appl. Phys. Lett. Vol. 84 (2004), p.26.

Google Scholar

[15] J. J. Lee and D. L. Kwong, IEEE Trans. Electron. Dev. Vol. 52 (2005), p.507.

Google Scholar

[16] S. J. Ding, M. Zhang, W. Chen, D. W. Zhang, L. K. Wang, X. Wang, C. Zhu, and M. F. Li, Appl. Phys. Lett. Vol. 88 (2006), p.042905.

Google Scholar

[17] W. Y. Huang, S. J. Ding, H. B. Chen, Q. Q. Sun, and D. W. Zhang, J. Vac. Sci. Technol. A Vol. 29 (2011), p.021006.

Google Scholar

[18] T. Pillo, R. Zimmermann, P. Steiner, and S. Hufner, J. Phys.: Condens. Matter Vol. 9 (1997), p.3987

Google Scholar

[19] S. J. Ding, M. Zhang, W. Chen, D. W. Zhang, and L. K. Wang, J. Electron. Mater. 36 (2007) 253.

Google Scholar

[20] C. C. Wang, J. Y. Wu, Y. Chiou, C. H. Chang, and T. B. Wu, Appl. Phys. Lett. Vol. 91 (2007), p.202110.

Google Scholar

[21] C. Lee, T. H. Hou, and E. C. Kan, IEEE Trans. Electron. Dev. Vol. 52 (2005), p.2697.

Google Scholar