Mode I Interlaminar Fracture Toughness of Through-Thickness Reinforced Laminated Structures

Article Preview

Abstract:

The main objective of the study is to understand the mechanisms of the preform reinforcement (2D, stitched and 2.5D) in laminated composite materials. The study is focusing on the mode I interlaminar fracture toughness for glass/vinylester based composites. Starting from DCB tests we quantify the critical energy release rate for the various cases of reinforcement, conclusive that 2.5D reinforcement can increase resistance x7 in comparison with the standard composite. Moreover, the existence of z-fibres made the fracture more complex and caused several characteristic phenomena, so that the required fracture energy for crack propagation was strongly increased. It is shown that a finite element model is successful in reproducing qualitatively the cracking initiation and propagation through the un-reinforced and 3D reinforced sample provided that the action of the through-thickness reinforcement is modelled by discrete nodal forces so as to replicate the physical phenomena.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-165

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Whitney JM. Experimental characterization of delamination fracture. In: Pagano NJ, editor. Interlaminar response of composite materials, Composite Material series 5. New York: Elsevier Science, (1989).

DOI: 10.1016/b978-0-444-87285-2.50008-x

Google Scholar

[2] Tamuzs V, Tarasovs S, Vilks U. Delamination properties of translaminar reinforced composites. Composites Science and Technology 2003; 63: 1423–1431.

DOI: 10.1016/s0266-3538(03)00042-3

Google Scholar

[3] Ko FK. Three-dimensional fabric for composite. In: Chou, TW, Ko FK, editors. Textile structural composite. New York: Elsevier, (1989).

Google Scholar

[4] Jain LK, Dransfield KA, Mai Y-W. Effect of reinforcing tabs on the Mode I delamination toughness of stitched CFRPs. Journal of Composite Materials 1998; 32(22): 2016–41.

DOI: 10.1177/002199839803202202

Google Scholar

[5] Dransfield KA, Jain LK, Mai Y-W. On the effects of stitching in CFRPs-I. Mode I delamination toughness. Composites Science and Technology 1998; 58(6): 815–27.

DOI: 10.1016/s0266-3538(97)00229-7

Google Scholar

[6] Jain LK, Yiu-Wing Mai. On the effect of stitching on Mode I delamination toughness of laminated composites. Composites Science and Technology 1994; 51(3): 331–45.

DOI: 10.1016/0266-3538(94)90103-1

Google Scholar

[7] Rugg KL, Cox BN, Massabo R. Mixed mode delamination of polymer composite laminates reinforced through the thickness by z-fibers. Composites Part A 2002; 33: 177–90.

DOI: 10.1016/s1359-835x(01)00109-9

Google Scholar

[8] Tong L, Mouritz AP, Banninster MK. 3D fibre reinforced polymer composites. Elsevier; (2002).

Google Scholar

[9] Partridge IK, Cartié DDR. Delamination resistant laminates by Z-Fiber_ pinning. Part I Manufacture and fracture performance. Composites Part A 2005; 35: 55–64.

DOI: 10.1016/s1359-835x(04)00180-0

Google Scholar

[10] Whitney JM. Experimental characterization of delamination fracture. In: Pagano NJ, editor. Interlaminar response of composite materials, Composite Material series 5. New York: Elsevier Science, (1989).

DOI: 10.1016/b978-0-444-87285-2.50008-x

Google Scholar

[11] ASTM D 5528-94a, 1997. Standard test method for Mode I interlaminar fracture toughness,. Annual book of ASTM standards, 1997, no. 15. 03.

Google Scholar

[12] Mouritz A.P., Baini C. et Herszberg I. Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites, Composites Part A, 1999, v. 30, p.859–870.

DOI: 10.1016/s1359-835x(98)00197-3

Google Scholar

[13] Falconnet D., Bourban P. -E., Pandita S., Manson J. -A. E., Verpoest I. Fracture toughness of weft-knitted fabric composites, Composites Part B, 2002, v. 33, no. 8, pp.579-588.

DOI: 10.1016/s1359-8368(02)00053-7

Google Scholar

[14] Guenon VA, Chou T-W, Gillespie JW. Toughness properties of a three-dimensional carbon-epoxy composite,. Journal of Materials Science, 1989; 24: 4168.

DOI: 10.1007/bf01168991

Google Scholar

[15] Geubelle P. H. and Baylor J. S. Impact-induced delamination of composites: a 2d simulation. Composites Part B, 1998, 29B: 589-602.

DOI: 10.1016/s1359-8368(98)00013-4

Google Scholar

[16] De Moura M. F. S. F., Conalves J. P., Marques A. T. and de Castro P. T. Prediction of compressive strength of carbon-epoxy laminates containing delaminations by using a mixed-mode damage model. Composite Structures, 2000, 50: 151-157.

DOI: 10.1016/s0263-8223(00)00091-x

Google Scholar

[17] Camanho P. P. and Davila C. G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. Technical Memorandum-2002-211737, NASA Langley Research Center, (2002).

Google Scholar

[18] Turon A., Davila C. G., Camanho P. P., and Costa J. An engineering solution for using coarse meshes in the simultaion of delamination with cohesive zone model. Technical Memorandum-2005-213547, NASA Langley Research Center, (2005).

Google Scholar

[19] Campilho R. D. S. G., de Moura M. F. S. F. and Domingues J. J. M. S. Modelling single and double-lap repairs on composite materials. Composites Science and Technology, 2005, 65: 1948-(1958).

DOI: 10.1016/j.compscitech.2005.04.007

Google Scholar

[20] Reeder JR. An evaluation of mixed-Mode delamination failure criteria. Technical Memorandum-1992-104210, NASA Langley Research Center, (1992).

Google Scholar

[21] Mazars J. Application de la mécanique de l'endommagement au comportement non linéaire et la rupture du béton de structure. PhD thesis, Université de Paris 6, 61, Av. PDT Wilson - 94230 Cachan - France, 1984. In French.

DOI: 10.1051/978-2-7598-0239-5-012

Google Scholar

[22] Turon A., Davila C. G., Camanho P. P., and Costa J. An engineering solution for using coarse meshes in the simultaion of delamination with cohesive zone model. Technical Memorandum-2005-213547, NASA Langley Research Center, (2005).

Google Scholar

[23] Reeder JR. An evaluation of mixed-Mode delamination failure criteria. Technical Memorandum-1992-104210, NASA Langley Research Center, (1992).

Google Scholar

[24] Zou Z., Reid S. R. and Li S. A continuum damage Model for delaminations in laminated composites. Mechanics and Physics of Solids, 2003, 51: 333-356.

DOI: 10.1016/s0022-5096(02)00075-3

Google Scholar