Strain Hardening Law Coupled to Damage and Remeshing Procedure Application to Sheet Hydroforming Processes

Article Preview

Abstract:

In this study, we present an experimental/numerical methodology which aims to improve 3D thin sheet hydroforming considering coupled constitutive equations formulated in the framework of irreversible processes accounting for isotropic hardening as well as isotropic ductile damage. The experimental study is dedicated to the identification of stress-strain flow from the global measure of pole displacement, thickness evolution and internal pressure expansion. Indeed, Hill48 yield surface anisotropy parameters and coefficients of the Swift law coupled to ductile damage allowing to locate plastic instability zones of hydroformed sheets are identified with three dies cavities shapes. Or during the hydroforming processes severe mesh distortion of element occur after a few incremental steps. Hence an automatic mesh generation with remeshing capabilities is essential to carry out the FEA. The proposed technique based on geometrical criteria includes adaptive refinement and coarsening procedure is integrated in a computational environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-199

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.D. Mielnieck, Metal working science and engineering, Mc Graw-Hill, Inc, (1991).

Google Scholar

[2] Erman Tekkaya, J. of Materials Processing Technology, Vol. 103, Issue 1, (2000), pp.14-22.

Google Scholar

[3] S. H. Zhang, J. of Materials Processing Technology, vol. 91, 1999, 236-244.

Google Scholar

[4] L. H. Lang, Z. R. Wang, D. C. Kang, S. J. Yuan, S. H. Zhang, J. Danckert, K. B. Nielsen, J. of Materials Processing Technology, vol. 151, 2004, 165-177.

Google Scholar

[5] J. Lemaitre, J. of Eng. Mat. Tech. vol. 107, 1985, 83-89.

Google Scholar

[6] P. Germain, Q-S. Nguyen, P. Suquet. J. of Eng. Mech, vol. 50, 1983, 1010-1020.

Google Scholar

[7] J-R. Rice et D-M. Tracy, J. of Mech. Phys, vol 17, 1969, 201-217.

Google Scholar

[8] A-L. Gurson, J. of Eng. Mat. Tech. Vol. 99, (1977).

Google Scholar

[9] V. Tvergaard. J. of Advances in Appl. Mech, vol. 27, 1990, 83-151.

Google Scholar

[10] A. Cherouat, K. Saanouni, Y. Hammi. I. J. of Mech. Sciences, vol. 44 (12), 2002, 2427-2446.

Google Scholar

[11] F.M. Andrade Pires, E.A. de Souza Neto, D.R.J. Owen. Computer Methods in Applied Mechanics and Engineering, vol. 193 (48-51), 5223-5256, (2004).

DOI: 10.1016/j.cma.2004.01.038

Google Scholar

[12] M. Ayadi, A. Cherouat, MA Rezgui & N Mezghani. Materials Science Forum, 2009, vol. 614, 129-134.

DOI: 10.4028/www.scientific.net/msf.614.129

Google Scholar

[13] R. Hill, A theory of yielding and plastic flow of anisotropic metals, Royal Soc., London Proc., 1948, p.281.

Google Scholar

[14] L. Giraud-Moreau, Borouchaki, H & A. Cherouat, A Remeshing Procedure for Numerical Simulation of Forming Processes in Three Dimensions, New York: Springer ISBN 3-540-34957-X, 127-143, (2006).

DOI: 10.1007/978-3-540-34958-7_8

Google Scholar

[15] Borouchaki, A. Cherouat, P. Laug and K. Saanouni. C.R. Mecanique 330, 709-716, (2002).

DOI: 10.1016/s1631-0721(02)01519-x

Google Scholar

[16] M. Ainsworth, J. T Oden. Computer Methods in Applied Mechanics and Engineering. Vol. 101, 73-96, (1992).

Google Scholar

[17] J. T. Oden, L. Demkowicz, W. Rachowicz and T. A. Westermann. Computer methods in applied mechanics and engineering, Vol. 77, 113-180, (1989).

DOI: 10.1016/0045-7825(89)90130-8

Google Scholar

[18] I. Babuška, L. Planck and R. Rodriguez. Computer Methods in Applied Mechanics and Engineering. Vol. 101, 97-112, (1992).

Google Scholar

[19] P. Coorevits, E. Bellenger, in: Alternative mesh optimality criteria for hadaptive finite element method. Finite elements in analysis and desig, Elsevier. Vol. 40, 2195-1215, (2004).

DOI: 10.1016/j.finel.2003.08.007

Google Scholar

[20] J. -W. Cho and D. -Y. Yang. A mesh refinement scheme for sheet metal forming analysis. Proc. of the 5th International Conference, NUMISHEET'02, 307-312, (2002).

Google Scholar

[21] Ho Choi, Muammer Koç, Jun Ni. Finite Elements in Analysis and Design, Vol. 43, Issue 3, 2007, 234-246.

Google Scholar

[22] Jieshi Chen, Xianbin Zhou, Jun Chen. Journal of Materials Processing Technology, vol. 210, Issue 2, 19, 2010, 315-322.

Google Scholar

[23] G. Nefussi, A. Combescure. International Journal of Mechanical Sciences, Vol. 44, Issue 5, 2002, 899-914.

Google Scholar