Performance Evaluation of Multiple Regression Method for Identification Models: Application to the Sheet Metal Forming Formability

Article Preview

Abstract:

The studies on the development and profitability of forming processes of thin structures, plastic deformation, continue to grow. Their goals are the prediction and assessment of default risks incurred by parts manufacturing phase. The quality of numerical predictions depends on the accuracy and reliability of the models selected. This justifies the development of different techniques for the identification of skills forming sheets and tubes. This study fits within this frame work, a method of identifying the coefficients characterizing the elastoplastic damage behavior of sheet metal based on the analysis of variance (ANOVA) was developed. Performance evaluation of the ANOVA analysis has been conducted through a confrontation of results with those identified by the inverse method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-186

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Gelin. O. Ghouati. Une méthode d'identification inverse des paramètres matériels pour les comportements non-linéaires. Rev. Européenne des éléments Finis 4 (4) (1995) 463–485.

DOI: 10.1080/12506559.1995.10511193

Google Scholar

[2] J.L. Chenot. E. Massoni. L. Fourment. Inverse problems in finite element simulation of metal forming processes. Engrg. Comput. 13 (2/3/4) (1996) 190–225.

DOI: 10.1108/02644409610114530

Google Scholar

[3] J. -C. Gelin. O. Ghouati. An inverse solution procedure for material parameters identification in large plastic deformation. Commun. Numer. Methods Engrg. 12 (3) (1996) 161–173.

DOI: 10.1002/(sici)1099-0887(199603)12:3<161::aid-cnm961>3.0.co;2-e

Google Scholar

[4] L. Fourment. J.L. Chenot. Inverse methods applied to metal forming processes. in: B.H.V. Topping (Ed. ). Computational Mechanics for theTwenty-First Century. Saxe-Coburg Publications. Edinburgh. 2000. p.127–143.

DOI: 10.4203/csets.3.7

Google Scholar

[5] O. Ghouati. J. -C. Gelin. Identification of material parameters directly from metal forming processes. J. Mater. Process. Technol. 80–81 (1998) 560–564.

DOI: 10.1016/s0924-0136(98)00159-9

Google Scholar

[6] J.P. Kleinermann. Identification paramétrique et optimisation des procèdes de mise a forme par problèmes inverses. Ph.D. thesis. Université de Liège. Septembre 2000. (In French).

Google Scholar

[7] Nelder. J. -A. Mead. R. 1965. A simplex method for function minimization. Comput.J. 7. 308–313.

Google Scholar

[8] A. Khalfallah. H. Bel Hadj Salah . A. Dogui Anisotropic parameter identification using inhomogeneous tensile test. European Journal of Mechanics A/Solids 21 (2002) 927–942.

DOI: 10.1016/s0997-7538(02)01246-9

Google Scholar

[9] S. Comsa. G. Cosovici. P. Jurco. L. Paraianu. D. Banabic . Simulation of the hydroforming process using a new orthotropic yield criterion. Journal of Materials Processing Technology 157–158 (2004) 67–74.

DOI: 10.1016/j.jmatprotec.2004.09.018

Google Scholar

[10] J.S. Chung. S.M. Hwang. Application of a genetic algorithm to process optimal design in non isothermal metal forming. J. Mater. Process. Technol. 80–81 (1998) 136–143.

DOI: 10.1016/s0924-0136(98)00209-x

Google Scholar

[11] X.T. Feng. C. Yang. Genetic evolution of nonlinear material constitutive models. Comput. Methods Appl. Mech. Engrg. 190 (2001) 5957–5973.

DOI: 10.1016/s0045-7825(01)00207-9

Google Scholar

[12] N. Huber. Ch. Tsakmakis. A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery. Comput. Methods Appl. Mech. Engrg. 191 (2001) 353–384.

DOI: 10.1016/s0045-7825(01)00278-x

Google Scholar

[13] N. Chakraborti. Genetic algorithms in material design and processing. Int. Mater. Rev. 49 (3–4) (2004) 246–260.

Google Scholar

[14] V.C. de Castilho. M. do Carmo Nicoletti. M.K. El Debs. An investigation of the use of three selection-based genetic algorithm families when minimizing the production cost of hollow core slabs. Comput. Methods Appl. Mech. Engrg. 194 (2005).

DOI: 10.1016/j.cma.2004.12.008

Google Scholar

[15] M. Papadrakakis. N.D. Lagaros. Y. Tsompanakis. Structural optimization using evolution strategies and neural networks. Comput. Methods Appl. Mech. Engrg. 156 (1998) 309–333.

DOI: 10.1016/s0045-7825(97)00215-6

Google Scholar

[16] S.F. Masri. A.W. Smyth. A.G. Chassiakos. M. Nakamura. T.K. Caughey. Training neural networks by adaptive random search techniques. J. Engrg. Mech. – ASCE 125 (1999) 123–132.

DOI: 10.1061/(asce)0733-9399(1999)125:2(123)

Google Scholar

[17] Q.S. Li. D.K. Liu. A.Y.T. Leung. N. Zhang. C.M. Tam. L.F. Yang. Modelling of structural response and optimization of structural control system using neural network and genetic algorithm. Struct. Design Tall Buildings 9 (2000) 279–293.

DOI: 10.1002/1099-1794(200009)9:4<279::aid-tal152>3.0.co;2-2

Google Scholar

[18] M. Papadrakakis. N.D. Lagaros. Reliability based structural optimization using neural networks and Monte Carlo simulation structural optimization using evolution strategies and neural networks. Comput. Methods Appl. Mech. Engrg. 191 (32) (2002).

DOI: 10.1016/s0045-7825(02)00287-6

Google Scholar

[19] A. Delameziere. H. Naceur. P. Breitkopf. C. Knopf-Lenoir. P. Batoz. J. -L. Villon. Feasibility in deep drawing: optimization of material properties using response surface. Mec. Ind. 3 (2002) 93–98.

Google Scholar

[20] R. Myers. D. Montgomery. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. second ed. Wiley. New York. USA. 2002 ISBN 0-471-41255-4.

Google Scholar

[21] P. Breitkopf. H. Naceur. A. Rassineux. P. Villon. Optimizing metal forming processes using response surface approximation and inverse approach surrogate model. in: Proceedings of ESAFORM. Trondheim. Norway. (2004).

Google Scholar

[22] H. Naceur. Y.Q. Guo. S. Ben-Elechi Response surface methodology for design of sheet forming parameters to control springback effects. Computers and Structures 84 (2006) 1651–1663.

DOI: 10.1016/j.compstruc.2006.04.005

Google Scholar

[23] M. Ayadi. M. A Rezgui . A. Cherouat. F. Slimani et T. M. Nasri. Contribution à la modélisation Expérimentale et Numérique des Instabilités Plastiques en Hydroformage des Tôles Minces. Mécanique & Industries Vol. 10 (2009) pp : 503-519.

DOI: 10.1051/meca/2010009

Google Scholar