Modeling and Analysis of Metabolism Process with Finite State Machine

Article Preview

Abstract:

This paper extends our early study on discrete events system formulations of DNA hybridization, and focuses discussions on metabolism and gene mutation in Molecular Biology. Finite state machine (FSM) theory is extensively applied to represent key concepts and analyze the processes related to the biological phenomena mentioned above. The goal is to mathematically represent and interpret the process of metabolism and the effects to structures of protein macro molecule caused by gene mutation. We hope the proposed model will provide a foothold for introducing the information science and the control theory tools in Molecular Biology

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 424-425)

Pages:

250-254

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. J. Zhang, On constructing a molecular computer, in DNA Based Computers, ser. Discrete Mathematics and Theoretical Computer Science (DIMACS), R. Lipton and E. Baum, Eds. Providence, RI: Amer. Math. Soc., pp.1-21 (1996).

DOI: 10.1090/dimacs/027

Google Scholar

[2] M. Zhang, M. X. Cheng and T. J. Tarn, A mathematical formulation of DNA computation, IEEE Trans. on Nanobioscience, vol. 5, pp.32-40 (2006).

DOI: 10.1109/tnb.2005.864017

Google Scholar

[3] R. Gao, J.Y. Yu, M. Zhang, T.J. Tarn, J.S. Li. A Mathematical Formu- lation of the Central Dogma of Molecular Biology,. In Nanomedicine: A System Engineering Approach, M. Zhang and N. Xi. Singapore: Pan Stanford Publishing Pte. Ltd., pp.81-116 (2009).

DOI: 10.1142/9789814241373_0003

Google Scholar

[4] E. S. Lander and P. Green, Construction of multilocus genetic linkage maps in humans, in Proceedings of the National Academy of Sciences of the United States of America, vol. 84, pp.2363-2367 (1987).

DOI: 10.1073/pnas.84.8.2363

Google Scholar

[5] G. A. Churchill, Stochastic models for heterogeneous DNA sequences, Bull Math. Biol., vol. 51, pp.79-94 (1989).

Google Scholar

[6] J. V. White, C. M. Stultz and T. F. Smith, Protein classification by stochastic modeling and optimal filtering of amino-acid sequences, Math. Bios, vol. 119, pp.35-75 (1994).

DOI: 10.1016/0025-5564(94)90004-3

Google Scholar

[7] K. Asai, S. Hayamizu and K. Onizuka, HMM with protein structure grammar, in Proceedings of the Hawaii International conference on System Sciences, pp.783-791 (1993).

DOI: 10.1109/hicss.1993.270612

Google Scholar

[8] S. R. Eddy, Hidden Markov models, Curr. Opin. Struct. Biol., vol. 6, pp.361-365 (1996).

Google Scholar

[9] S. R. Eddy, Multiple alignment using hidden Markov models, ISMB, vol. 3, pp.114-120 (1995).

Google Scholar

[10] P. Baldi, Y. Chauvin, T. Hunkapillar and M. A. McClure, Hidden Markov models of biological primary sequence information, Proc. Natl. Acad. Sci., vol. 91, pp.1059-1063 (1994).

DOI: 10.1073/pnas.91.3.1059

Google Scholar

[11] Krogh, M. Brown, I. S. Mian, K. Sjölander and D. Haussler, Hidden Markov models in computational biology. Applications to protein modeling, J. Mol. Biol., vol. 235, pp.1505-1531 (1994).

DOI: 10.1006/jmbi.1994.1104

Google Scholar

[12] R. Gao, J.Y. Yu, M.J. Zhang, T.J. Tarn, and J.S. Li. Systems Theoretic Analysis of the Central Dogma of Molecular Biology: Some Recent Results, , IEEE Trans. on NanoBioscience, vol. 9, no. 1, pp.59-70 (2010).

DOI: 10.1109/tnb.2010.2041065

Google Scholar

[13] F. H. C. Crick, Central dogma of molecular biology, Nature, vol. 227, pp.561-563 (1970).

DOI: 10.1038/227561a0

Google Scholar

[14] F. H. C. Crick, On protein synthesis, Symp. Soc. Exp. Biol., XII, pp.139-163 (1958).

Google Scholar

[15] G. J. Mitchison and R. M. Durbin, Tree-based maximal likelihood substitution matrices and hidden Markov models, J. Mol. Evol., vol. 41, pp.1139-1151 (1995).

DOI: 10.1007/bf00173195

Google Scholar