Bioinformatics Analysis and Characteristics of UL14 Protein Encoded by UL14 Gene in Duck Enteritis Virus

Article Preview

Abstract:

Bioinformatics analysis was performed to predict the characteristics of the UL14 protein. The results revealing that there is no transmembrane region, and its molecular mass is 17524,9 Da, isoelectric point (IP) is 5.71. The phylogenetic tree shows that DEV-CHv is a separate branch, that is to say, DEV may be an osculant example among the herpesvirus genera. In addition the analysis of the physico-chemical properties demonstrates that UL14 has 6 main antigenic determinants and 5 phosphorylation sites. And the subcellular localization analysis indicates that UL14 is mainly located in cytoplasmic, nuclear, and mitochondrial. In conclusion, all those consequences are valuable for further researches on more accurate molecular characteristic of DEV-UL14.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 424-425)

Pages:

669-675

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. S. Sandhu, S. A. Metwally. Duck Virus Enteritis (Duck Plague). in: S. Y.M., (Ed. ), Diseases of poultry[M], Blackwell Publishing, 384-393, (2008).

Google Scholar

[2] R.Y. Jia, A.C. Cheng, M. S. Wang, Y. F. Guo, M. Wen, G. P. Yuan, et al. Studies on ultrastructure of duck enteritis virus chv virulent strain. Chinese J. Virol. Beijing, Vol. 23, pp.202-206, ( 2007).

Google Scholar

[3] G. P. Yuan, A. C. Cheng, M. S. Wang, F. Liu, X. Y. Han, Y. H. Liao, et al. Electron microscopic studies of the morphogenesis of duck enteritis virus. Avian Dis. Ithaca. vol. 49, pp.50-55, (2005).

DOI: 10.1637/7237-071004r

Google Scholar

[4] T. C. Mettenleiter. B. G. Klupp, and H. Granzow. Herpesvirus assembly: An Update. Virus Res. Amsterdam. vol. 143, pp.222-243, (2009).

DOI: 10.1016/j.virusres.2009.03.018

Google Scholar

[5] David, M. K. Peter, M. H, Fields Virology, 5th ed, Amsterdam: Lippincott Williams & Wilkins, p.2506–2507, (2007).

Google Scholar

[6] A. C. Cheng, M. S. Wang, M. Wen, W. G. Zhou, Y. F. Guo, R. Y. Jia, C. Xu, G. P. Yuan, Y. C. Liu. Construction of duck enteritis virus gene libraries and discovery, cloning and identification of viral nucleocapsid protein gene. High Technol. Lett, ISTIC, Beijing, vol. 16, pp.948-953, (2006).

Google Scholar

[7] K. Wada, F. Goshima,H. Takakuwa, et al. Identification and characterization of the UL14 gene product of herpes simplex virus type 2. J Gen Virol, Vol. 80, pp.2423-2431, (1999).

DOI: 10.1099/0022-1317-80-9-2423

Google Scholar

[8] Charles Cunningham, A. J. Davison, A. R . MacLean, et al. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein. J Virol, Vol 74, pp.33-41, (2000).

DOI: 10.1128/jvi.74.1.33-41.2000

Google Scholar

[9] Yohei Yamauchi, Kaoru Wada, Fumi Goshima, et al. The UL14 protein of herpes simplex virus type 2 translocates the minor capsid protein VP26 and the DNA cleavage and packaging UL33 protein into the nucleus of coexpressing cells. J Gen Virol , Vol. 82, pp.321-330, (2001).

DOI: 10.1099/0022-1317-82-2-321

Google Scholar

[10] Yohei Yamauchi, Kazuya Kiriyama, Naomi Kubota, et al. The UL14 tegument protein of herpes simplex virus type 1 is required for efficient nuclear transport of the alpha transinducing factor VP16 and viral capsids. J Virol, Vol. 82, pp.1094-1106, (2008).

DOI: 10.1128/jvi.01226-07

Google Scholar

[11] Yohei Yamauchi, Fumi Goshima, Tetsushi Yoshikawa, et al. Intercellular trafficking of herpes simplex virus type 2 UL14 deletion mutant proteins. Biochemical and Biophysical Research Communications, Vol. 298, p.357–363, (2002).

DOI: 10.1016/s0006-291x(02)02452-x

Google Scholar

[12] Yohei Yamauchi, Kaoru Wada, Fumi Goshima, et al. Herpes simplex virus type 2 UL14 gene product has heat shock protein (HSP)-like functions. J Cell Science, Vol. 115, pp.2517-2527, (2002).

DOI: 10.1242/jcs.115.12.2517

Google Scholar

[13] Yamauchi Y, Daikoku T, Goshima F, et al. Herpes simplex virus UL14 protein blocks apoptosis", Microbiol Immunol, Vol. 47, pp.685-689, (2003).

DOI: 10.1111/j.1348-0421.2003.tb03432.x

Google Scholar

[14] Martino L D, Marfe G, Irno Consalvo M, et al. Antiapoptotic activity of bovine herpesvirus type-1(BHV-1) UL14 protein. Veterinary Microbiology, vol. 123, p.210–216, (2007).

DOI: 10.1016/j.vetmic.2007.02.026

Google Scholar

[15] William W. Newcomb and Jay C. Brown. Time-Dependent Transformation of the Herpesvirus tegument, J Virol, vol. 83, p.8082–8089, (2009).

DOI: 10.1128/jvi.00777-09

Google Scholar

[16] Wada K, Goshima F, Takakuwa H, et al. Identification and characterization of the UL14 gene product of herpes simplex virus type 2. J Gen Virol, vol. 80, pp.2423-2431. (1999).

DOI: 10.1099/0022-1317-80-9-2423

Google Scholar

[17] Davison A J, Scott J E. The complete DNA sequence of varicella-zoster virus. J Gen Virol, vol. 67, pp.1759-1816, (1986).

DOI: 10.1099/0022-1317-67-9-1759

Google Scholar

[18] L. D. Liu, W. J. Wu, M. Hong, H. J. Shi, S. H. Ma, J. J. Wang, et al. Phylogenetic analysis of homologous proteins encoded by UL2 and UL23 genes of herpesviridae. Virol Sin. China, vol. 22, pp.207-211, ( 2007).

DOI: 10.1007/s12250-007-0023-2

Google Scholar

[19] P. Norberg, T. Bergstrom, E. Rekabdar, M. Lindh, J. A. Liljeqvist. Phylogenetic analysis of clinical herpes simplex virus type 1 isolates identified three genetic groups and recombinant viruses , J Virol. Washington, vol. 78, pp.10755-10764, (2004).

DOI: 10.1128/jvi.78.19.10755-10764.2004

Google Scholar

[20] W. Zhang, and Z. R. Sun, Random local neighbor joining: A new method for reconstructing phylogenetic tree. Molecular Phylogenetics and Evolution, vol. 47, pp.117-128, (2008).

DOI: 10.1016/j.ympev.2008.01.019

Google Scholar

[21] D. Deb, S. Vishveshwara, and S. Vishveshwara. Understanding protein structure from a percolation perspective. Biophysical Journal, vol. 97, pp.1787-1794, (2009).

DOI: 10.1016/j.bpj.2009.07.016

Google Scholar

[22] B. R. Yang, Q. Wu, Z. Ying, and H. F. Sui. Predicting protein secondary structure using a mixed-modal SVM method in a compound pyramid model. Knowledge-Based Systems, vol. 24, no. 2, pp.304-313, (2011).

DOI: 10.1016/j.knosys.2010.10.002

Google Scholar

[23] H. R. Griffiths. Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease. Autoimmunity Reviews, vol. 7, pp.544-549, (2008).

DOI: 10.1016/j.autrev.2008.04.013

Google Scholar

[24] S. M. Chi. Prediction of protein subcellular localization by weighted gene ontology terms. Biochemical and Biophysical Research Communications, vol. 399, pp.402-405, (2010).

DOI: 10.1016/j.bbrc.2010.07.086

Google Scholar