[1]
T. S. Sandhu, S. A. Metwally. Duck Virus Enteritis (Duck Plague). in: S. Y.M., (Ed. ), Diseases of poultry[M], Blackwell Publishing, 384-393, (2008).
Google Scholar
[2]
R.Y. Jia, A.C. Cheng, M. S. Wang, Y. F. Guo, M. Wen, G. P. Yuan, et al. Studies on ultrastructure of duck enteritis virus chv virulent strain. Chinese J. Virol. Beijing, Vol. 23, pp.202-206, ( 2007).
Google Scholar
[3]
G. P. Yuan, A. C. Cheng, M. S. Wang, F. Liu, X. Y. Han, Y. H. Liao, et al. Electron microscopic studies of the morphogenesis of duck enteritis virus. Avian Dis. Ithaca. vol. 49, pp.50-55, (2005).
DOI: 10.1637/7237-071004r
Google Scholar
[4]
T. C. Mettenleiter. B. G. Klupp, and H. Granzow. Herpesvirus assembly: An Update. Virus Res. Amsterdam. vol. 143, pp.222-243, (2009).
DOI: 10.1016/j.virusres.2009.03.018
Google Scholar
[5]
David, M. K. Peter, M. H, Fields Virology, 5th ed, Amsterdam: Lippincott Williams & Wilkins, p.2506–2507, (2007).
Google Scholar
[6]
A. C. Cheng, M. S. Wang, M. Wen, W. G. Zhou, Y. F. Guo, R. Y. Jia, C. Xu, G. P. Yuan, Y. C. Liu. Construction of duck enteritis virus gene libraries and discovery, cloning and identification of viral nucleocapsid protein gene. High Technol. Lett, ISTIC, Beijing, vol. 16, pp.948-953, (2006).
Google Scholar
[7]
K. Wada, F. Goshima,H. Takakuwa, et al. Identification and characterization of the UL14 gene product of herpes simplex virus type 2. J Gen Virol, Vol. 80, pp.2423-2431, (1999).
DOI: 10.1099/0022-1317-80-9-2423
Google Scholar
[8]
Charles Cunningham, A. J. Davison, A. R . MacLean, et al. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein. J Virol, Vol 74, pp.33-41, (2000).
DOI: 10.1128/jvi.74.1.33-41.2000
Google Scholar
[9]
Yohei Yamauchi, Kaoru Wada, Fumi Goshima, et al. The UL14 protein of herpes simplex virus type 2 translocates the minor capsid protein VP26 and the DNA cleavage and packaging UL33 protein into the nucleus of coexpressing cells. J Gen Virol , Vol. 82, pp.321-330, (2001).
DOI: 10.1099/0022-1317-82-2-321
Google Scholar
[10]
Yohei Yamauchi, Kazuya Kiriyama, Naomi Kubota, et al. The UL14 tegument protein of herpes simplex virus type 1 is required for efficient nuclear transport of the alpha transinducing factor VP16 and viral capsids. J Virol, Vol. 82, pp.1094-1106, (2008).
DOI: 10.1128/jvi.01226-07
Google Scholar
[11]
Yohei Yamauchi, Fumi Goshima, Tetsushi Yoshikawa, et al. Intercellular trafficking of herpes simplex virus type 2 UL14 deletion mutant proteins. Biochemical and Biophysical Research Communications, Vol. 298, p.357–363, (2002).
DOI: 10.1016/s0006-291x(02)02452-x
Google Scholar
[12]
Yohei Yamauchi, Kaoru Wada, Fumi Goshima, et al. Herpes simplex virus type 2 UL14 gene product has heat shock protein (HSP)-like functions. J Cell Science, Vol. 115, pp.2517-2527, (2002).
DOI: 10.1242/jcs.115.12.2517
Google Scholar
[13]
Yamauchi Y, Daikoku T, Goshima F, et al. Herpes simplex virus UL14 protein blocks apoptosis", Microbiol Immunol, Vol. 47, pp.685-689, (2003).
DOI: 10.1111/j.1348-0421.2003.tb03432.x
Google Scholar
[14]
Martino L D, Marfe G, Irno Consalvo M, et al. Antiapoptotic activity of bovine herpesvirus type-1(BHV-1) UL14 protein. Veterinary Microbiology, vol. 123, p.210–216, (2007).
DOI: 10.1016/j.vetmic.2007.02.026
Google Scholar
[15]
William W. Newcomb and Jay C. Brown. Time-Dependent Transformation of the Herpesvirus tegument, J Virol, vol. 83, p.8082–8089, (2009).
DOI: 10.1128/jvi.00777-09
Google Scholar
[16]
Wada K, Goshima F, Takakuwa H, et al. Identification and characterization of the UL14 gene product of herpes simplex virus type 2. J Gen Virol, vol. 80, pp.2423-2431. (1999).
DOI: 10.1099/0022-1317-80-9-2423
Google Scholar
[17]
Davison A J, Scott J E. The complete DNA sequence of varicella-zoster virus. J Gen Virol, vol. 67, pp.1759-1816, (1986).
DOI: 10.1099/0022-1317-67-9-1759
Google Scholar
[18]
L. D. Liu, W. J. Wu, M. Hong, H. J. Shi, S. H. Ma, J. J. Wang, et al. Phylogenetic analysis of homologous proteins encoded by UL2 and UL23 genes of herpesviridae. Virol Sin. China, vol. 22, pp.207-211, ( 2007).
DOI: 10.1007/s12250-007-0023-2
Google Scholar
[19]
P. Norberg, T. Bergstrom, E. Rekabdar, M. Lindh, J. A. Liljeqvist. Phylogenetic analysis of clinical herpes simplex virus type 1 isolates identified three genetic groups and recombinant viruses , J Virol. Washington, vol. 78, pp.10755-10764, (2004).
DOI: 10.1128/jvi.78.19.10755-10764.2004
Google Scholar
[20]
W. Zhang, and Z. R. Sun, Random local neighbor joining: A new method for reconstructing phylogenetic tree. Molecular Phylogenetics and Evolution, vol. 47, pp.117-128, (2008).
DOI: 10.1016/j.ympev.2008.01.019
Google Scholar
[21]
D. Deb, S. Vishveshwara, and S. Vishveshwara. Understanding protein structure from a percolation perspective. Biophysical Journal, vol. 97, pp.1787-1794, (2009).
DOI: 10.1016/j.bpj.2009.07.016
Google Scholar
[22]
B. R. Yang, Q. Wu, Z. Ying, and H. F. Sui. Predicting protein secondary structure using a mixed-modal SVM method in a compound pyramid model. Knowledge-Based Systems, vol. 24, no. 2, pp.304-313, (2011).
DOI: 10.1016/j.knosys.2010.10.002
Google Scholar
[23]
H. R. Griffiths. Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease. Autoimmunity Reviews, vol. 7, pp.544-549, (2008).
DOI: 10.1016/j.autrev.2008.04.013
Google Scholar
[24]
S. M. Chi. Prediction of protein subcellular localization by weighted gene ontology terms. Biochemical and Biophysical Research Communications, vol. 399, pp.402-405, (2010).
DOI: 10.1016/j.bbrc.2010.07.086
Google Scholar