[1]
A J. Davision. Herpesvirus systematics: Elsevier Sponsored Docuument. vol. 143, pp.52-69 (2010).
Google Scholar
[2]
H. P. Yin, W. Z. Guo, Z. W. Xu, and L. Yang. Analysis of factors shaping synonymous codon usage in pseudorabies virus. Journal of Zhejiang University (Agric. & Life Sci. ), vol. 33, pp.247-253, (2007).
Google Scholar
[3]
A. C. Cheng, M. S. Wang, M. Wen, W. G. Zhou, Y. F. Guo, R. Y. Jia, et al. Construction of duck enteritis virus gene libraries and discovery, cloning and identification of viral nucleocapsid protein gene. High Technology Lett, Elsevier Science, Amsterdam, vol. 16, pp.948-953, (2006).
Google Scholar
[4]
C. Gustafsson, S. Govindarajan, and J. Minshull. Codon bias and heterologous protein expression. Trends in Biotechnology, Elsevier Ltd, Oxford, 22(7) p.346–353, (2004).
DOI: 10.1016/j.tibtech.2004.04.006
Google Scholar
[5]
E.N. Moriyama, and D. L. Hartl. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics, Genetics Society of America, U.S. A, 134(3) p.847–858, (1993).
DOI: 10.1093/genetics/134.3.847
Google Scholar
[6]
H.P. Sorensen, and K.K. Mortensen. Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, Elsevier Ltd, Oxford, 115(2) p.113–128, (2005).
DOI: 10.1016/j.jbiotec.2004.08.004
Google Scholar
[7]
M. Heitzer, A. Eckert, M. Fuhrmann, and C. Griesbeck. Influence of codon bias on the expression of foreign genes in microalgae. Advance in Experimental Medicine and Biology, Springer, New York, 616, p.616: 46–53, (2007).
DOI: 10.1007/978-0-387-75532-8_5
Google Scholar
[8]
T. Ikemura. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. Journal of Molecular Biology, Elsevier Science, Amsterdam, vol. 151, pp.389-409, (1981).
DOI: 10.1016/0022-2836(81)90003-6
Google Scholar
[9]
S. D. Hooper, and O. G. Berg. Gradients in nucleotide and codon usage along Escherichia coli genes. Nucleic Acids Res, Oxford University Press, Oxford, vol. 28, pp.3517-3523, (2000).
DOI: 10.1093/nar/28.18.3517
Google Scholar
[10]
X. R. Ma, S. B. Xiao, L. R. Fang, and H. C. Chen. Bias of base composition and codon usage in pseudorabies virus genes. J. Genet. Genomics, Elsevier Science, Amsterdam, vol. 32, pp.616-624, (2005).
Google Scholar
[11]
J. D. Hall, J. S. Gibbs, D. M. Coen, and D. W. Mount. Structural organization and unusual codon usage in the DNA polymerase gene from herpes simplex virus type 1. DNA, Wiki, New Rochelle, vol. 5, pp.281-288, (1986).
DOI: 10.1089/dna.1986.5.281
Google Scholar
[12]
K. Wada, F. Goshima,H. Takakuwa, et al. Identification and characterization of the UL14 gene product of herpes simplex virus type 2. J Gen Virol, Vol. 80, pp.2423-2431, (1999).
DOI: 10.1099/0022-1317-80-9-2423
Google Scholar
[13]
Charles Cunningham, A. J. Davison, A. R . MacLean, et al. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein. J Virol, Vol 74, pp.33-41, (2000).
DOI: 10.1128/jvi.74.1.33-41.2000
Google Scholar
[14]
L. DeMartino, G. Marfe, M. Irnoconsalvo, et al. Antiapoptotic activity of bovine herpesvirus type-1(BHV-1)UL14 protein. J Veterinary Microbiology, 123, P. 210-216(2007).
DOI: 10.1016/j.vetmic.2007.02.026
Google Scholar
[15]
Yamauchi Y, Daikoku T, Goshima F, et al. Herpes simplex virus UL14 protein blocks apoptosis. J Microbiol Immunol, 47(9): 685-689, (2003).
DOI: 10.1111/j.1348-0421.2003.tb03432.x
Google Scholar
[16]
P. M. Sharp, and W. H. Li. The codon adaptation index-a measure of directional synonymous codon usage bias,and its potential applications. Nucleic. Acids. Res, Oxford University Press, Oxford vol. 15, pp.1281-1295, (1987).
DOI: 10.1093/nar/15.3.1281
Google Scholar
[17]
H. Sakai, T. Washio, R. Saito, A. Shinagawa, M. Itoh, K. Shibata, et al. Correlation between sequence conservation of the 5' untranslated region and codon usage bias in Mus musculus genes. Gene, Elsevier Science, Amsterdam, vol. 276, pp.101-105.
DOI: 10.1016/s0378-1119(01)00671-0
Google Scholar
[18]
H. Lü, W. M. Zhao, Y. Zheng, H. Wang, M. Qi and X. P. Yu. Analysis of synonymous codon usage bias in Chlamydia. Acta Biochim Biophys Sin, Oxford University Press, Oxford, vol. 37, pp.1-10, ( 2005).
DOI: 10.1093/abbs/37.1.1
Google Scholar
[19]
F. Wright. The effective number of codons, used in a gene. Gene, vol. 87, pp.23-29, (1990).
DOI: 10.1016/0378-1119(90)90491-9
Google Scholar
[20]
J. A. Novembre. Accounting for background nucleotide composition when measuring codon usage bias. Mol Biol Evol, Oxford University Press, Oxford, vol. 19, pp.1390-1394, (2002).
DOI: 10.1093/oxfordjournals.molbev.a004201
Google Scholar
[21]
Y.Y. Hsiao, C.H. Lin, J.K. Liu, T.Y. Wong and J. Kuo. Analysis of codon usage patterns in toxic dinoflagellate alexandrium tamarense through expressed sequence tag data, " Comparative and Functional Genomics, vol. pp.138538-138546, doi: 10. 1371, journal. pone. 0013431, (2010).
DOI: 10.1155/2010/138538
Google Scholar
[22]
H. S. Najafabadi, J. Lehmann, and M. Omidi. Error minimization explains the codon usage of highly expressed genes in Escherichia coli. Gene, Elsevier Science, Amsterdam, vol. 387, pp.150-155, (2007).
DOI: 10.1016/j.gene.2006.09.004
Google Scholar
[23]
P. Jiang , X. Sun, and Z. Lu. Analysis of Synonymous Codon Usage in Aeropyrum pernix K1 and Other Crenarchaeota Microorganisms. Journal of Genetics and Genomics, Elsevier Science, Amsterdam, vol. 34, pp.275-284, (2007).
DOI: 10.1016/s1673-8527(07)60029-0
Google Scholar
[24]
T. Zhou, , X. Sun, and Z. Lu. Synonymous codon usage in environmental chlamydia UWE25 reflects an evolutional divergence from pathogenic chlamydiae. Gene, Elsevier Science, Amsterdam, vol. 368, pp.117-125, (2006).
DOI: 10.1016/j.gene.2005.10.035
Google Scholar
[25]
R.Y. Jia, A.C. Cheng, M.S. Wang, H. Xin, Y. Guo, D. K, Zhu, X.Y. Chen. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes, vol. 38, no. 1, pp.96-103, doi: 10. 1007/s11262-008-0295-0, (2009).
DOI: 10.1007/s11262-008-0295-0
Google Scholar
[26]
M.S. Cai, A.C. Cheng, M.S. Wang, L.C. Zhao, D.K. Zhu, Q.H. Luo, F. Liu and X.Y. Chen. Characterization of synonymous codon usage bias in the duck plague virus UL35 gene. Intervirology, vol. 52, pp.266-278, doi: 10. 1159/000231992, (2009).
DOI: 10.1159/000231992
Google Scholar
[27]
L.C. Zhao, A.C. Cheng, M.S. Wang, G.P. Yuan and M.S. Cai. Characterization of codon usage bias in the dUTPase gene of duck enteritis virus. Prog Nat Sci, vol. 18, no. 9 , pp.1069-1076, doi: 10. 1016/j, pnsc, (2008).
DOI: 10.1016/j.pnsc.2008.03.009
Google Scholar
[28]
Yohei Yamauchi, Kazuya Kiriyama, Naomi Kubota, et al. The UL14 tegument protein of herpes simplex virus type 1 is required for efficient nuclear transport of the alpherpesvirus transinducing factor VP16 and viral capsids. J Virol, Vol. 82, pp.1094-1106, (2008).
DOI: 10.1128/jvi.01226-07
Google Scholar
[29]
Martino L D, Marfe G, Irno Consalvo M, et al. Antiapoptotic activity of bovine herpesvirus type-1(BHV-1)UL14protein. Veterinary Microbiology, 123: 210–216, (2007).
DOI: 10.1016/j.vetmic.2007.02.026
Google Scholar
[30]
K. Wada, F. Goshima, H. Takakuwa, et al. Identification and characterization of the UL14 gene product of herpes simplex virus type 2. J Gen Virol, vol. 80, pp.2423-2431, (1999).
DOI: 10.1099/0022-1317-80-9-2423
Google Scholar
[31]
A. J. Davison, J. E. Scott. The complete DNA sequence of varicella-zoster virus. J Gen Virol, vol. 67, pp.1759-1816, (1986).
DOI: 10.1099/0022-1317-67-9-1759
Google Scholar
[32]
Yohei Yamauchi, Kaoru Wada, Fumi Goshima, et al. The UL14 protein of herpes simplex virus type 2 translocates the minor capsid protein VP26 and the DNA cleavage and packaging UL33 protein into the nucleus of coexpressing cells. J Gen Virol , Vol. 82, pp.321-330, (2001).
DOI: 10.1099/0022-1317-82-2-321
Google Scholar
[33]
Yohei Yamauchi, Fumi Goshima, Tetsushi Yoshikawa, et al. Intercellular trafficking of herpes simplex virus type 2 UL14 deletion mutant proteins. Biochemical and Biophysical Research Communications, Vol. 298, p.357–363, (2002).
DOI: 10.1016/s0006-291x(02)02452-x
Google Scholar
[34]
Yohei Yamauchi, Kaoru Wada, Fumi Goshima, et al. Herpes simplex virus type 2 UL14 gene product has heat shock protein (HSP)-like functions. J Cell Science, Vol. 115, pp.2517-2527, (2002).
DOI: 10.1242/jcs.115.12.2517
Google Scholar