Analysis of Synonymous Codon Usage in the UL14 Gene of Duck Enteritis Virus

Article Preview

Abstract:

The codon usage of DEV UL14 gene was analyzed by using CAI, CHIPS and CUSP program of EMBOSS. The results showed that codon usage bias in the DEV UL14 gene was a high level of diversity in codon usage bias towards the synonymous with C and G at the third codon position existed for coding the Glu, Gly, Asn and Tyr amino acids. The cluster analysis demonstrated that the codon usage bias of DEV UL14 gene has a very close relationship with its gene function and gene type. In addition, the E.coli expression system is more suitable for heterologous expression of the DEV UL14 gene.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 424-425)

Pages:

680-689

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A J. Davision. Herpesvirus systematics: Elsevier Sponsored Docuument. vol. 143, pp.52-69 (2010).

Google Scholar

[2] H. P. Yin, W. Z. Guo, Z. W. Xu, and L. Yang. Analysis of factors shaping synonymous codon usage in pseudorabies virus. Journal of Zhejiang University (Agric. & Life Sci. ), vol. 33, pp.247-253, (2007).

Google Scholar

[3] A. C. Cheng, M. S. Wang, M. Wen, W. G. Zhou, Y. F. Guo, R. Y. Jia, et al. Construction of duck enteritis virus gene libraries and discovery, cloning and identification of viral nucleocapsid protein gene. High Technology Lett, Elsevier Science, Amsterdam, vol. 16, pp.948-953, (2006).

Google Scholar

[4] C. Gustafsson, S. Govindarajan, and J. Minshull. Codon bias and heterologous protein expression. Trends in Biotechnology, Elsevier Ltd, Oxford, 22(7) p.346–353, (2004).

DOI: 10.1016/j.tibtech.2004.04.006

Google Scholar

[5] E.N. Moriyama, and D. L. Hartl. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics, Genetics Society of America, U.S. A, 134(3) p.847–858, (1993).

DOI: 10.1093/genetics/134.3.847

Google Scholar

[6] H.P. Sorensen, and K.K. Mortensen. Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, Elsevier Ltd, Oxford, 115(2) p.113–128, (2005).

DOI: 10.1016/j.jbiotec.2004.08.004

Google Scholar

[7] M. Heitzer, A. Eckert, M. Fuhrmann, and C. Griesbeck. Influence of codon bias on the expression of foreign genes in microalgae. Advance in Experimental Medicine and Biology, Springer, New York, 616, p.616: 46–53, (2007).

DOI: 10.1007/978-0-387-75532-8_5

Google Scholar

[8] T. Ikemura. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. Journal of Molecular Biology, Elsevier Science, Amsterdam, vol. 151, pp.389-409, (1981).

DOI: 10.1016/0022-2836(81)90003-6

Google Scholar

[9] S. D. Hooper, and O. G. Berg. Gradients in nucleotide and codon usage along Escherichia coli genes. Nucleic Acids Res, Oxford University Press, Oxford, vol. 28, pp.3517-3523, (2000).

DOI: 10.1093/nar/28.18.3517

Google Scholar

[10] X. R. Ma, S. B. Xiao, L. R. Fang, and H. C. Chen. Bias of base composition and codon usage in pseudorabies virus genes. J. Genet. Genomics, Elsevier Science, Amsterdam, vol. 32, pp.616-624, (2005).

Google Scholar

[11] J. D. Hall, J. S. Gibbs, D. M. Coen, and D. W. Mount. Structural organization and unusual codon usage in the DNA polymerase gene from herpes simplex virus type 1. DNA, Wiki, New Rochelle, vol. 5, pp.281-288, (1986).

DOI: 10.1089/dna.1986.5.281

Google Scholar

[12] K. Wada, F. Goshima,H. Takakuwa, et al. Identification and characterization of the UL14 gene product of herpes simplex virus type 2. J Gen Virol, Vol. 80, pp.2423-2431, (1999).

DOI: 10.1099/0022-1317-80-9-2423

Google Scholar

[13] Charles Cunningham, A. J. Davison, A. R . MacLean, et al. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein. J Virol, Vol 74, pp.33-41, (2000).

DOI: 10.1128/jvi.74.1.33-41.2000

Google Scholar

[14] L. DeMartino, G. Marfe, M. Irnoconsalvo, et al. Antiapoptotic activity of bovine herpesvirus type-1(BHV-1)UL14 protein. J Veterinary Microbiology, 123, P. 210-216(2007).

DOI: 10.1016/j.vetmic.2007.02.026

Google Scholar

[15] Yamauchi Y, Daikoku T, Goshima F, et al. Herpes simplex virus UL14 protein blocks apoptosis. J Microbiol Immunol, 47(9): 685-689, (2003).

DOI: 10.1111/j.1348-0421.2003.tb03432.x

Google Scholar

[16] P. M. Sharp, and W. H. Li. The codon adaptation index-a measure of directional synonymous codon usage bias,and its potential applications. Nucleic. Acids. Res, Oxford University Press, Oxford vol. 15, pp.1281-1295, (1987).

DOI: 10.1093/nar/15.3.1281

Google Scholar

[17] H. Sakai, T. Washio, R. Saito, A. Shinagawa, M. Itoh, K. Shibata, et al. Correlation between sequence conservation of the 5' untranslated region and codon usage bias in Mus musculus genes. Gene, Elsevier Science, Amsterdam, vol. 276, pp.101-105.

DOI: 10.1016/s0378-1119(01)00671-0

Google Scholar

[18] H. Lü, W. M. Zhao, Y. Zheng, H. Wang, M. Qi and X. P. Yu. Analysis of synonymous codon usage bias in Chlamydia. Acta Biochim Biophys Sin, Oxford University Press, Oxford, vol. 37, pp.1-10, ( 2005).

DOI: 10.1093/abbs/37.1.1

Google Scholar

[19] F. Wright. The effective number of codons, used in a gene. Gene, vol. 87, pp.23-29, (1990).

DOI: 10.1016/0378-1119(90)90491-9

Google Scholar

[20] J. A. Novembre. Accounting for background nucleotide composition when measuring codon usage bias. Mol Biol Evol, Oxford University Press, Oxford, vol. 19, pp.1390-1394, (2002).

DOI: 10.1093/oxfordjournals.molbev.a004201

Google Scholar

[21] Y.Y. Hsiao, C.H. Lin, J.K. Liu, T.Y. Wong and J. Kuo. Analysis of codon usage patterns in toxic dinoflagellate alexandrium tamarense through expressed sequence tag data, " Comparative and Functional Genomics, vol. pp.138538-138546, doi: 10. 1371, journal. pone. 0013431, (2010).

DOI: 10.1155/2010/138538

Google Scholar

[22] H. S. Najafabadi, J. Lehmann, and M. Omidi. Error minimization explains the codon usage of highly expressed genes in Escherichia coli. Gene, Elsevier Science, Amsterdam, vol. 387, pp.150-155, (2007).

DOI: 10.1016/j.gene.2006.09.004

Google Scholar

[23] P. Jiang , X. Sun, and Z. Lu. Analysis of Synonymous Codon Usage in Aeropyrum pernix K1 and Other Crenarchaeota Microorganisms. Journal of Genetics and Genomics, Elsevier Science, Amsterdam, vol. 34, pp.275-284, (2007).

DOI: 10.1016/s1673-8527(07)60029-0

Google Scholar

[24] T. Zhou, , X. Sun, and Z. Lu. Synonymous codon usage in environmental chlamydia UWE25 reflects an evolutional divergence from pathogenic chlamydiae. Gene, Elsevier Science, Amsterdam, vol. 368, pp.117-125, (2006).

DOI: 10.1016/j.gene.2005.10.035

Google Scholar

[25] R.Y. Jia, A.C. Cheng, M.S. Wang, H. Xin, Y. Guo, D. K, Zhu, X.Y. Chen. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes, vol. 38, no. 1, pp.96-103, doi: 10. 1007/s11262-008-0295-0, (2009).

DOI: 10.1007/s11262-008-0295-0

Google Scholar

[26] M.S. Cai, A.C. Cheng, M.S. Wang, L.C. Zhao, D.K. Zhu, Q.H. Luo, F. Liu and X.Y. Chen. Characterization of synonymous codon usage bias in the duck plague virus UL35 gene. Intervirology, vol. 52, pp.266-278, doi: 10. 1159/000231992, (2009).

DOI: 10.1159/000231992

Google Scholar

[27] L.C. Zhao, A.C. Cheng, M.S. Wang, G.P. Yuan and M.S. Cai. Characterization of codon usage bias in the dUTPase gene of duck enteritis virus. Prog Nat Sci, vol. 18, no. 9 , pp.1069-1076, doi: 10. 1016/j, pnsc, (2008).

DOI: 10.1016/j.pnsc.2008.03.009

Google Scholar

[28] Yohei Yamauchi, Kazuya Kiriyama, Naomi Kubota, et al. The UL14 tegument protein of herpes simplex virus type 1 is required for efficient nuclear transport of the alpherpesvirus transinducing factor VP16 and viral capsids. J Virol, Vol. 82, pp.1094-1106, (2008).

DOI: 10.1128/jvi.01226-07

Google Scholar

[29] Martino L D, Marfe G, Irno Consalvo M, et al. Antiapoptotic activity of bovine herpesvirus type-1(BHV-1)UL14protein. Veterinary Microbiology, 123: 210–216, (2007).

DOI: 10.1016/j.vetmic.2007.02.026

Google Scholar

[30] K. Wada, F. Goshima, H. Takakuwa, et al. Identification and characterization of the UL14 gene product of herpes simplex virus type 2. J Gen Virol, vol. 80, pp.2423-2431, (1999).

DOI: 10.1099/0022-1317-80-9-2423

Google Scholar

[31] A. J. Davison, J. E. Scott. The complete DNA sequence of varicella-zoster virus. J Gen Virol, vol. 67, pp.1759-1816, (1986).

DOI: 10.1099/0022-1317-67-9-1759

Google Scholar

[32] Yohei Yamauchi, Kaoru Wada, Fumi Goshima, et al. The UL14 protein of herpes simplex virus type 2 translocates the minor capsid protein VP26 and the DNA cleavage and packaging UL33 protein into the nucleus of coexpressing cells. J Gen Virol , Vol. 82, pp.321-330, (2001).

DOI: 10.1099/0022-1317-82-2-321

Google Scholar

[33] Yohei Yamauchi, Fumi Goshima, Tetsushi Yoshikawa, et al. Intercellular trafficking of herpes simplex virus type 2 UL14 deletion mutant proteins. Biochemical and Biophysical Research Communications, Vol. 298, p.357–363, (2002).

DOI: 10.1016/s0006-291x(02)02452-x

Google Scholar

[34] Yohei Yamauchi, Kaoru Wada, Fumi Goshima, et al. Herpes simplex virus type 2 UL14 gene product has heat shock protein (HSP)-like functions. J Cell Science, Vol. 115, pp.2517-2527, (2002).

DOI: 10.1242/jcs.115.12.2517

Google Scholar