[1]
J. Hooke, River meander behavior and instability: a framework for analysis, Institute of British Geographers Transactions 28, 238–253, (2003).
DOI: 10.1111/1475-5661.00089
Google Scholar
[2]
A.D. Howard, Modeling channel evolution and floodplain morphology, In: Anderson, M.G., Walling, D.E., Bates, P.D. (Eds. ), Floodplain Processes, Wiley, Chichester, UK, p.15–62, (1996).
Google Scholar
[3]
H. Johannes son, G. Parker, Linear theory of river Meanders, In: Ikeda, S., Parker, G. (Eds. ), River Meandering. Water Resources Monograph 12, American Geophysical Union, Washington, DC, p.181–212 (Chapter 7), (1989).
DOI: 10.1029/wm012p0181
Google Scholar
[4]
S.T. Lancaster, A nonlinear river meander model and its incorporation in a landscape evolution model, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, 177pp, (1998).
Google Scholar
[5]
H. -H. Stlum, P.F. Friend, Percolation theory applied to simulated meander belt bodies, Earth and Planetary Science Letters 153, 265–277, (1997).
DOI: 10.1016/s0012-821x(97)00173-8
Google Scholar
[6]
K, Nilsson, E. Segergren, M. Leijon, Simulation of direct drive generators designed for underwater vertical axis turbines, In: Proceedings of the fifth European wave energy conference, Cork, Ireland; (2003).
Google Scholar
[7]
M. Khan, M. Iqbal, E. Quaicoe, River current energy conversion system: progress, prospects and challenges, Renewable and Sustainable Energy Reviews 2008; 12: 2177e93.
DOI: 10.1016/j.rser.2007.04.016
Google Scholar
[8]
J.S.G. Ehnberg, M.H.J. Bollen, Generation reliability for small isolated power systems entirely based on renewable sources, Proc. IEEE Symp. Power Engineering Society General Meeting, 2004. IEEE, IEEE Press, June 2004, pp.2322-2327.
DOI: 10.1109/pes.2004.1373300
Google Scholar
[9]
M.J. Khan, G. Bhuyan , M.T. Iqbal , J.E. Quaicoe, Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review , Applied energy; 86 (2009) 1823–1835.
DOI: 10.1016/j.apenergy.2009.02.017
Google Scholar
[10]
Verdant Power, LLC, 4640 13th Street, North, Arlington, VA 22207, USA; October 2008. www. verdantpower. com/category/newsroom.
Google Scholar
[11]
Eriksson H, Moroso A, Fiorentino A. The vertical axis Kobold turbine in theStrait of Messina – a case study of a full scale marine current prototype. World maritime technology conference, London; (2006).
Google Scholar
[12]
Atlantisstrom; October 2008. URL <http: /www. atlantisstrom. de/description. html>.
Google Scholar
[13]
HydroVenturi Ltd; October 2008. URL <www. hydroventuri. com/news. php>.
Google Scholar
[14]
Arnold Energy System; October 2008. URL < www. arnoldenergysystems. com>.
Google Scholar
[15]
Taylor George W, Burns Joseph R, Kammann Sean M, Powers William B, Welsh Thomas R. The energy harvesting eel: a small subsurface ocean/river power generator. IEEE J Ocean Eng 2001; 26(4): 539–47.
DOI: 10.1109/48.972090
Google Scholar
[16]
Venturi LtdVortex Hydro; October 2008. URL <www. votexhydroenergy. com/news. php>.
Google Scholar
[17]
Seasnail; October 2008. URL <http: /www. rgu. ac. uk/cree/general/page. cfm?pge=10769>.
Google Scholar
[18]
N. Rüther , N.R.B. Olsen; Modelling free-forming meander evolution in a laboratory channel using three-dimensional computational fluid dynamic, Geomorphology 89 (2007) 308–319.
DOI: 10.1016/j.geomorph.2006.12.009
Google Scholar
[19]
Levy D. Power from natural flow at zero static head. Int Power Generation (1995).
Google Scholar
[20]
Rutten L. Au fil de l'eau, une rou a aubes. Systemes Solaires 1994; 100: 103–5.
Google Scholar