[1]
G. Chen, S.G. Krantzs, D.W. Ma, C.E. Wanyne, and H.H. West, The Euler-Bernoulli beam equation with boundary dissipation, in operator methods for optimal control problem, J Lee, ed. New York: Marcel-Dekker, 1988, pp.67-96.
Google Scholar
[2]
F.L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert space, Ann. Diff. Eqs., vol. 1, pp.43-53, (1985).
Google Scholar
[3]
G. Chen, M.C. Dalfour, A.M. Krall, and G. Payre, Modeling, stabilization and control of serially connected beam, SIAM J. Control. Optim., vol. 25, pp.526-546, March (1987).
DOI: 10.1137/0325029
Google Scholar
[4]
B.Z. Guo, and J.M. Wang, Riesz Basis generation of Abstract Second-order Partial Differential Equation Systems with General Non-separated Boundary Conditions, Numerical Functional Analysis and Optimization, vol. 27, pp.291-328, (2006).
DOI: 10.1080/01630560600657265
Google Scholar
[5]
A.A. Shkalikov, and C. Tretter, Spectral analysis for linear pencils of ordinary differential operators, Math. Nach., vol. 197, pp.275-305, (1996).
DOI: 10.1002/mana.19961790116
Google Scholar
[6]
Y.T. Wang, G. Wang, and S.J. Li, On Riesz basis of Euler-Bernoulli beam system by boundary feedback control, Acta Mathematica Sinica, vol. 43, pp.1089-1098, June (2000).
Google Scholar