[1]
Myers, R.H., and Montgomery, D.C., Response Surface Methodology: Process and Product Optimization using Designed Experiments, second edition, USA , Wiley , (2002).
Google Scholar
[2]
Pasandideh, S.H. R and Akhavan Niakin S. T, Multi-response simulation optimization using genetic algorithm within desirability function framework, Applied Mathematics and Computation, 175, , 2006, pp.366-382.
DOI: 10.1016/j.amc.2005.07.023
Google Scholar
[3]
Osborne, D.M. and L. Armacost, R. L, state of the art in multiple response smace methodology, IEEE, , 1997, pp.3833-3838.
Google Scholar
[4]
Montgomery, D.C., Design and analysis of experiments, fifth edition, USA , Wiley , (2001).
Google Scholar
[5]
Hwang, C.L. , Masud A.S. M, Paidy S.R. and Yoon, K, multiple objective decision making-methods and applications, Germany, Berlin, Springer, (1979).
Google Scholar
[6]
Ortiz, F., Simpson, J. R., Pignatiello, J. J., A Genetic Algorithm Approach to MultipleResponse Optimization, Journal of Quality Technology, 36(4), (2004).
Google Scholar
[7]
Tajbakhsh, S. D and Noorossana , R , Important issues in multiple response optimization, 4th International Management Conference, (2006).
Google Scholar
[8]
Kim, K. J., Byun, J. H., Min, D., Jeong, I. J., Multiresponse Surface Optimization: Concept, Methods, and Future Direction", (Tutorial), Korea Society for Quality Management, (2001).
Google Scholar
[9]
Myers R.H., and Carter W.H., Response surface techniques for dual response systems, Technometrics, 15, 1973, 301-317.
DOI: 10.1080/00401706.1973.10489044
Google Scholar
[10]
Biles, W., A response surface method for experimental optimization of multi response processes, industrial and engineering chemistry, process design and deployment, 14, 1975, 152-158.
DOI: 10.1021/i260054a010
Google Scholar
[11]
Del Castillo, E., Montgomery, D. C., A Nonlinear Programming Solution to the Dual Response Problem, Journal of Quality Technology 25, 1993, pp.199-20.
DOI: 10.1080/00224065.1993.11979454
Google Scholar
[12]
Harrington. E. Jr, the desirability function, industrial quality control, 21, 1965, 494-498.
Google Scholar
[13]
Derringer, G., and Suich, R.,. Simultanous Optimization of Several Response Variables, Journal of Quality Technology, Vol. 12, No. 4, 1980. pp.214-219.
DOI: 10.1080/00224065.1980.11980968
Google Scholar
[14]
Pignatiello, J. J., Jr., Strategies for Robust Multi-response Quality Engineering, IIE Trans., 25, 1993, 5-15.
Google Scholar
[15]
Vinning , G G. , a compromise approach to Multiresponse optimization, Journal of Quality Technology, 30, 1998. pp.309-313.
Google Scholar
[16]
Tsui, K. , robust design optimization for multiple characteristics problems, international journal of production research, 37, 1999. pp.433-445.
Google Scholar
[17]
Riberio, J and Elsayed,E. , a case study on process optimization using the gradient loss function , international journal of production research, 33, 1999. pp.3233-3248.
DOI: 10.1080/00207549508904871
Google Scholar
[18]
Liu .B., Theory and Practice of Uncertain Programming, third edition, china , UTLab department of Mathematical Sciences Tsinghua University, 2009, http: /orsc. edu. cn/liu/up. pdf.
Google Scholar
[19]
R. Noorossana, S. D. Tajbakhsh, A. Saghaei, An Artificial Neural Network Approach to Multiple Response Optimization, International Journal of Advanced Manufacturing Technology. http: /www. samtaj. net/Research. aspx.
DOI: 10.1007/s00170-008-1423-7
Google Scholar
[20]
Bashiri, M and Hosseininejad S. J, optimization of multiple response process by neural networks based on desirability concept, IJIEPM, 4, 20, 2009, 53-63.
Google Scholar
[21]
Romano . D, , Varetto M., and Vicario G., Multiresponse robust design: a general framework based on combined array, Journal of Quality Technology, 36, 1, 2004. pp.27-37.
DOI: 10.1080/00224065.2004.11980250
Google Scholar
[22]
Ko Y. H , Kim K. J and Jun C. H, a new loss function-based method for Multiresponse optimization, Journal of Quality Technology, 37, 1, 2005. pp.50-59.
DOI: 10.1080/00224065.2005.11980300
Google Scholar
[23]
Noorossana. R. and Ardakani, M.K., Robust Parameter Design using an Lp metric, , IJIEPM, 19, 4, 2008, 63-70.
Google Scholar
[24]
Sadjadi , S. j. , Habibian . M and khaledi ,V., a multi objective decision making approach for solving quadratic multiple response surface problems, M.S. c Dissertation, Iran University of Science and Technology, Iran, Tehran (2008).
Google Scholar
[25]
Jeong .I. J and Kim .K. J, an interactive desirability function method to Multiresponse optimization, Eropean journal of operational research, 195, 2009, 412-426.
DOI: 10.1016/j.ejor.2008.02.018
Google Scholar
[26]
Montgomery, D.C., Bettencourt Jr., V.M., Multiple response surface methods in computer simulation. Simulation 29, 1977. , 113–121.
DOI: 10.1177/003754977702900406
Google Scholar
[27]
Mollaghasemi, M., Evans, G.W. Multicriteria design of manufacturing systems through simulation optimization. IEEE Transactions on Systems, Man, and Cybernetics 24, 1994, 1407–1411.
DOI: 10.1109/21.310518
Google Scholar
[28]
Park, K., Kim, K.,. Optimizing multi-response surface problems: How to use multi-objective optimization techniques. IIE Transactions 37, 2005, 523–532.
DOI: 10.1080/07408170590928992
Google Scholar
[29]
Jeong, I., Kim, K.,. D-STEM: A modified step method with desirability function concept. Computers and Operations Research 32, 2005, 3175–3190.
DOI: 10.1016/j.cor.2004.05.006
Google Scholar
[30]
Kazemzadeh ,R. B, Bashiri, M., Atkinson . C and noorossana . R , a general framework for Multiresponse optimization problems based on goal programming, Eropean journal of operational research, 189, 2008, 421-429.
DOI: 10.1016/j.ejor.2007.05.030
Google Scholar
[31]
Khoo, L. P., and Chen, C.H.,. Integration of Response Surface Methodology With Genetic Algorithms, International Journal of Advanced Manufacturing Technology, Vol. 18, 2001. pp.483-489.
DOI: 10.1007/s0017010180483
Google Scholar
[32]
Lee, D. H, Jeong I. J Kim, K.,. A posteriori preference articulation approach to dual response surface optimization". IIE Transactions 42, 2 2010, 161-171.
DOI: 10.1080/07408170903228959
Google Scholar