Mechanism Analysis on Performance Enhancement of Ammonia Bubble Absorption by Nanofluid

Article Preview

Abstract:

The objective of this paper is to analyze the enhancement mechanism of ammonia bubble absorption performance by nanofluid. In this paper, the process of ammonia bubble absorption is divided into three different steps: the bubble growing, the gas absorption in liquid phase and the interface phase transfer. According to the analysis, nanofluid can enhance the diffusion coefficient or the absorption performance in each step, and enhance the whole absorption performance resultly; the gas mass transfer during the bubble growing is enhanced by nanofluid for the surface tension decrease; the main cause for the enhancement of the gas absorption in liquid phase is considered as the transport effect of nanoparticles carrying ammonia gas molecule and the vortex transfer effect arising from Brownian motion of nanoparticles; the main cause for the enhancement of the transfer at phase interface is considered as the Marangoni convection and the vortex transfer effect due to nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

195-201

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. T. Kang, A. Akisawa, T. Kashiwagi, Int. J. Refrigeration, 23 (2000) 430-443.

Google Scholar

[2] T. Kashiwagi, Newsletter, 6 (1988) 2-6.

Google Scholar

[3] Y. T. Kang, A. Akisawa, T. Kashiwagi, Int. J. Refrigeration, 22 (1999) 640-649.

Google Scholar

[4] W. L. Cheng, R. Zhao, C. Liu, J. of Refrigeration (in Chinese), 2006, 27 (3) 35-40.

Google Scholar

[5] J. A. Eastman, U. S. Choi and S. Li, Nanophase and Nanocomposite Materials Ⅱ, MRS, Pittsburgh, (1997).

Google Scholar

[6] Y. M. Xuan, Q. Li, Int. J. Heat Fluid Flow, 21(2000) 58-64.

Google Scholar

[7] C. T. Nguyen, G. Roy, C. Gauthier, Appl. Therm. Eng., 27(2007)1501-1506.

Google Scholar

[8] Y. R. He, Y. Jin, H. S. Chen, Int. J. of Heat and Mass Transfer, 50(2007)2272-2281.

Google Scholar

[9] X.F. Li, D. S. Zhu, X. J. Wang, N. Wang, J. W. Gao, H. Li, Thermochim. Acta, 469(2008)98–103.

Google Scholar

[10] W. Yu, H. q. Xie, L. f. Chen, Y. Li, Thermochim. Acta, 491(2009)92-96.

Google Scholar

[11] S. Krishnamurthy, P. Bhattacharya, P. E. Phelan, R. S. Prasher, Nano Letter, 2006(3) 419-423.

Google Scholar

[12] J. K. Kim, J. Y. Jung, Y. T. Kang, Int. J. of Refrigeration, 29 (2006)22-29.

Google Scholar

[13] J. K. Kim, J. Y. Jung, Y. T. Kang, Int. J. of Refrigeration, 30 (2007) 50-57.

Google Scholar

[14] X. Ma, F. Su, J. Chen, J. of Mechanical Science and Technology, 21 (2007) 1813-1818.

Google Scholar

[15] J. Lee, M. Y. Jeong, Cryogenics and Refrigeration Proceeding of ICCR2008, Science press, Shanghai, China April, 2008, p.580.

Google Scholar

[16] J. K. Kim, J. Y. Jung, Y. T. Kang, Int. J. of Refrigeration, 29 (2006) 22-29.

Google Scholar

[17] W. Sheng, W. D. Wu, H. Zhang, H. Liu, H. X. Hong, J. of Chemical Industry and Engineering (in Chinese), 59(2008)2762-2767.

Google Scholar

[18] S. M. Bharaju, T. W. F. Russel, H. W. Blanch, AIChE J, 24 (1978) 454-466.

Google Scholar

[19] A. Einstein, Investigations on the theory of brownian movement, Dover Publications, New York, (1956).

Google Scholar

[20] X. Peng, X. Yu, L. Xia, Trans. of the Chinese Society for Agricultural Machinery, 4(2007)138-150.

Google Scholar

[21] R. B. Bird, Transport Phenomena, Chemical engineering press, Beijing, (2004).

Google Scholar

[22] D. Isvoranu , M. D. Int. J. of Heat and Mass Transfer, 47 (2004) 3769-3782.

Google Scholar

[23] L. Yu, A. Zeng, Trans. of Tianjin University, 6 (2006) 91-98.

Google Scholar

[24] J. Lee, M. Y. Jeong, W. P. Chan, ICCR2008, Science press, Beijing 580-586.

Google Scholar