[1]
H. Zhang and T. A. Gulliver, Performance and capacity of PAM and PPM UWB time-hopping multiple access communications with receive diversity, EURASIP J. Applied Signal Processing, pp.306-315, Mar. (2005).
DOI: 10.1155/asp.2005.306
Google Scholar
[2]
H. Zhang and T. A. Gulliver, Capacity of time-hopping PPM and PAM UWB multiple access communications over indoor fading channels, EURASIP J. Wireless Commun. and Networking, vol. (2008).
DOI: 10.1155/2008/273018
Google Scholar
[3]
H. Zhang and T. A. Gulliver, Performance and capacity of PAM and PPM UWB systems with multiple receiver antennas, Proc. IEEE Pacific Rim Conf. on Commun., Computers and Signal Processing, pp.740-743, Aug. (2003).
DOI: 10.1109/pacrim.2003.1235887
Google Scholar
[4]
H. Zhang and T. A. Gulliver, "Biorthogonal pulse position modulation for time-hopping multiple access UWB communications. IEEE Trans. Wireless Commun., vol. 4, no. 3, pp.1154-1162, May (2005).
DOI: 10.1109/twc.2005.846969
Google Scholar
[5]
W. Li, T. A. Gulliver, and H. Zhang, "Performance and capacity of ultra-wideband transmission with biorthogonal pulse position modulation over multipath fading channels, Proc. IEEE Int. Conf. on Ultra-Wideband, pp.225-229, Sept. (2005).
DOI: 10.1109/icu.2005.1569989
Google Scholar
[6]
J. Zhang, R. A. Kennedy, and T. D. Abhayapala, Performance of RAKE reception for Ultra Wideband signals in a lognormal fading channel, Proc. Int. Workship on Ultra Wideband Systems (IWUWBS), June (2003).
DOI: 10.1023/b:ijwi.0000022050.22706.c4
Google Scholar
[7]
B. Mielczarek, M. O. Wessman and A. Svensson, Performance of coherent UWB RAKE receivers with channel estimators, Proc. IEEE Vehic. Tech. Conf., p.1880–1884, Oct. (2003).
DOI: 10.1109/vetecf.2003.1285351
Google Scholar
[8]
H. Zhang, T. Udagawa, T. Arita, and M. Nakagawa, A statistical model for the small-scale multi-path fading characteristics of ultra wideband indoor channel, Proc. IEEE Conf. on Ultra Wideband Systems and Technologies, pp.81-85, May (2002).
DOI: 10.1109/uwbst.2002.1006323
Google Scholar
[9]
L. Zhao and A. M. Haimovich, The capacity of an UWB multiple-access communications system, Proc. IEEE Int. Conf. Commun., pp.1964-1968, May (2002).
Google Scholar
[10]
A. A. Saleh and R. A. Valenzuela, A statistical model for indoor multipath propagation, IEEE J. Select. Areas Commun., vol. 5, no. 2, pp.128-137, Feb. (1987).
DOI: 10.1109/jsac.1987.1146527
Google Scholar
[11]
J. Foerster, ed., Channel modeling sub-committee report final, IEEE 802. 15 Working Group for Wireless Personal Area Networks(WPANs), IEEE P802. 15-02/490r1-SG3a, Feb. (2003).
Google Scholar
[12]
D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, Performance of low-complexity RAKE reception in a realistic UWB channel, Proc. IEEE Int. Conf. Commun., pp.763-767, May (2002).
DOI: 10.1109/icc.2002.996958
Google Scholar
[13]
S. Tantikovit, A. U. H. Sheikh, and M. Z. Wang, Combining schemes in RAKE receiver for low spreading factor long-code W-CDMA systems, IEE Elect. Letts., vol. 36, no. 22, p.1872–1874, Oct. (2000).
DOI: 10.1049/el:20001326
Google Scholar
[14]
S. Gezici, H. Kobayashi, H. V. Poor, and A. F. Molisch, Performance evaluation of impulse radio UWB systems with pulse-based polarity randomization in asynchronous multi-user environments, Proc. IEEE Wireless Commun. and Networking Conf., pp.908-913, Mar. (2004).
DOI: 10.1109/wcnc.2004.1311307
Google Scholar
[15]
J. G. Proakis Digital Communications, 4th ed. Boston: McGraw-Hill, 2001. Figure 3. Bit error rate for 4-ary BPPM over a CM1 channel with different RAKE receivers. Figure 4. Bit error rate for 4-ary BPPM over a CM2 channel with different RAKE receivers. Figure 5. Bit error rate for 4-ary BPPM over a CM3 channel with different RAKE receivers. Figure 6. Bit error rate for 4-ary BPPM over a CM4 channel with different RAKE receivers. Figure 7. Bit error rate for 4-ary PPM and 4-ary BPPM over a CM1 channel with a SRake receiver (S=10). Figure 8. Bit error rate for 4-ary BPPM over the CM1-CM4 channels with a SRake receiver (S=10).
DOI: 10.11648/j.ajnc.20160505.11
Google Scholar