Analysis of Periodical Microstructures Using Optical Methods

Article Preview

Abstract:

In this work we present an optical laser based method for characterization of periodical microstructure. It allows indirect evaluation of geometrical and optical parameters of periodical microstructures. Proposed method is applicable for optimization and control of technological processes in the cases when traditional measurement techniques are not suitable. The main experimental results are compared with the computer simulations where the standard programs PCGrate-SX6.0 and and GSolver V4.20b were employed. Error of estimation of geometrical parameters of periodical microstructures by comparing theoretical and experimental values of diffraction efficiencies of periodical microstructures is less than 5%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

2021-2028

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. M de Ridder, A. Driessen, E. Rikkers, P.V. Lambeck, M.B.J. Diemeer, Design and fabrication of electro-optic polymer modulators and switches, Optical Materials, vol. 12, iss. 2-3, June 1999, pp.205-214.

DOI: 10.1016/s0925-3467(99)00048-8

Google Scholar

[2] W.M.J. Green, M.J. Rooks, L. Sekaric, Y.A. Vlasov, Optical modulation using anti-crossing between paired amplitude and phase resonators, Optics Express, vol. 15, iss. 25, pp.17264-17272.

DOI: 10.1364/oe.15.017264

Google Scholar

[3] G. Janusas, A. Palevicius, V. Ostasevicius, R. Bansevicius, A. Busilas, Development and experimental analysis of piezoelectric optical scanner with implemented periodical microstructure, Journal of Vibroengineering, Vol. 9, Issue 3, 2007 July/September, pp.10-14.

DOI: 10.1117/12.776762

Google Scholar

[4] L.A. Kulakova, E.Z. Yakhkind, Acousto-optic modulator for IR diode laser radiation, J. Opt. A: Pure Appl. Opt.; no. 3, 2001, pp. S9-S11.

DOI: 10.1088/1464-4258/3/4/352

Google Scholar

[5] T. Kondoh, H. Kashima, J. Yang, Y. Yoshida, Dynamic optical modulation of the electron beam for the high performance intensity modulated radiation therapy, Proceedings of PAC07, Albuquerque, New Mexico, USA, 2007, pp.2802-2804.

DOI: 10.1109/pac.2007.4440581

Google Scholar

[6] X. Yu, X. Zheng, H. Zhang, Polarization state rotation filter for optical generation of continuously tunable millimeter-wave signal employing an external intensity modulator, Optical Fiber Technology, vol. 13, iss. 1, January 2007, pp.56-61.

DOI: 10.1016/j.yofte.2006.07.002

Google Scholar

[7] B. Sepúlveda, G. Armelles, L.M. Lechuga, Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors, Sensors and Actuators A: Physical, vol. 134, iss. 2, 15 March 2007, pp.339-347.

DOI: 10.1016/j.sna.2006.05.046

Google Scholar

[8] Y.L. Lo, T.C. Yu, A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal, Optics Communications, vol. 259, iss. 1, 1 March 2006, pp.40-48.

DOI: 10.1016/j.optcom.2005.08.061

Google Scholar

[9] N. He, W. Jia, M. Gong, L. Huang, Design and mechanism analysis of a novel type compact single mirror laser scanner, Sensors and Actuators A: Physical, vol. 125(2), 2006, pp.482-485.

DOI: 10.1016/j.sna.2005.07.011

Google Scholar

[10] X. Zhao, C. Zhou, L. Liu, Design of beam scanners based on Talbot-encoded phase plates, Optical Materials, vol. 23, iss. 1-2, July-August 2003, pp.313-318.

DOI: 10.1016/s0925-3467(02)00309-9

Google Scholar

[11] J.T.W. Yeow, V.X.D. Yang, A. Chahwan, M.L. Gordon, B. Qi, I.A. Vitkin, B.C. Wilson, A.A. Goldenberg, Micromachined 2-D scanner for 3-D optical coherence tomography, Sensors and Actuators A: Physical, vol. 117, iss. 2, 14 January 2005, pp.331-340.

DOI: 10.1016/j.sna.2004.06.021

Google Scholar

[12] G. Xu, Z. Liu, J. Ma, B. Liu, S.T. Ho, Organic electro-optic modulator using transparent conducting oxides as electrodes, Optics Express, vol. 13, iss. 19, pp.7380-7385.

DOI: 10.1364/opex.13.007380

Google Scholar

[13] B.W. Barr, S.H. Huttner, J.R. Taylor, B. Sorazu, M.V. Plissi, K.A. Strain, Optical modulation techniques for length sensing and control of optical cavities, Appl Opt., 46 (31), 2007 Nov 1, pp.7739-7745.

DOI: 10.1364/ao.46.007739

Google Scholar

[14] M. Gieler, F. Aumayr, R. Gaggl, C. Neureiter, L. Windholz, Application of an electro-optical modulator in inelastic collision studies with laser-excited Na*(3p) atoms, J. Phys. B: At. Mol. Opt. Phys., no. 26, 1993, pp.297-303.

DOI: 10.1088/0953-4075/26/2/013

Google Scholar

[15] R. Steingrüber, M. Ferstl, W. Pilz, Micro-optical elements fabricated by electron-beam lithography and dry etching technique using top conductive coatings, Microelectronic Engineering, vol. 57-58, September 2001, pp.285-289.

DOI: 10.1016/s0167-9317(01)00497-x

Google Scholar

[16] T.G. Harvey, N. Carter, M. Cinderey, D.E. Laidler, T.G. Ryan, P. Summersgill, Replication of free space micro-optical elements on glass substrates by UV-embossing, EOS Topical Meetings Digest, vol. 9, 1996, pp.20-21.

Google Scholar

[17] P.W. Leech, R.A. Lee, A.B. Sexton, F. Smith, Hot embossing of micrographic elements in polypropylene, Microelectronic Engineering, vol. 84, iss. 1, January 2007, pp.109-113.

DOI: 10.1016/j.mee.2006.08.010

Google Scholar

[18] M. Trinker, E. Jericha, R. Loidl, H. Rauch, Microfabricated silicon gratings as neutron-optical components, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 586, iss. 1, 11 February 2008, pp.124-128.

DOI: 10.1016/j.nima.2007.11.042

Google Scholar

[19] D. Content, Diffraction grating groove analysis used to predict efficiency and scatter performance, SPIE Proceedings, in Conference on Gradient Index, Miniature, and Diffractive Optical Systems, vol. 3778, 1999, pp.19-30.

DOI: 10.1117/12.363756

Google Scholar

[20] Software PCGrate, (www. pcgrate. com).

Google Scholar

[21] Software GSolver, (http: /www. gsolver. com/).

Google Scholar

[22] L.I. Goray, J.F. Seely, Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method nd comparisons with measurements, Applied Optics, vol. 41, no. 7, 2002, pp.1434-1445.

DOI: 10.1364/ao.41.001434

Google Scholar

[23] L.I. Goray, Rigorous integral method in application to computing diffraction on relief gratings working in wavelength range from microwave to X-ray, Application theory of periodic Structures, SPIE Proceedings, vol. 2532, 1995, pp.427-433.

DOI: 10.1117/12.221255

Google Scholar

[24] L.I. Goray, Modified integral method for weak convergence problems of light scattering on relief grating, Diffractive and Holographic Technologies for Integrated Photonic Systems, SPIE Proceedings, vol. 4291, 2001, pp.1-12.

DOI: 10.1117/12.424838

Google Scholar

[25] L.I. Goray, B.C. Chernov, Comparison of rigorous methods for X-ray and XUV gratings diffraction analysis, X-ray and Extreme Ultraviolet Optics, SPIE Proceedings, vol. 2515, 1995, pp.240-245.

DOI: 10.1117/12.212594

Google Scholar

[26] M.G. Moharam, D.A. Pommet, E.B. Grann, T.K. Gaylord, Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings enhanced transmittance matrix approach, J. Opt. Soc. Am A 12, 1995, pp.1077-1085.

DOI: 10.1364/josaa.12.001077

Google Scholar

[27] M.G. Van Kraaij, J.M.L. Maubach, A More Efficient Rigorous Coupled-Wave Analysis Algorithm, Progress in Industrial Mathematics at ECMI, vol. 8, 2004, pp.164-168.

DOI: 10.1007/3-540-28073-1_21

Google Scholar

[28] A. Palevicius, G. Janusas, B. Narijauskaite, M. Mikolajunas, D. Virzonis, Implementation of computer-generated holograms using 3D electron beam lithography, Journal of Vibroengineering / Vibromechanika, vol. 11, no. 3, 2009, pp.407-414.

Google Scholar

[29] T. Tamulevicius, S. Tamulevičius, M. Andrulevicius, E. Griskonis, L. Puodziukynas, G. Janusas, A. Guobiene, Formation of periodical microstructures using interference lithography, Experimental Techniques, doi: 10. 1111/j. 1747-1567. 2007. 00291. x, 2007, pp.1-6.

DOI: 10.1111/j.1747-1567.2007.00291.x

Google Scholar

[30] S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, M. Andrulevicius, Optical characterization of diffractive optical elements replicated in polymers, Journal of Microlithography, Microfabrication and Microsystems, ISSN 1537-1646, Bellingham, vol. 5, no. 1, 2006, p.013004.

DOI: 10.1117/12.597628

Google Scholar

[31] G. Janusas, A. Palevicius, A. Bubulis, Numerical analysis of holographic plate stability, Vibroengineering 2008: proceedings of the 7th International Conference, Kaunas University of Technology, Lithuania, 2008, pp.83-86.

Google Scholar

[32] G. Janusas, K. Daucanskiene, S. Tamulevicius, A. Palevicius, T. Tamulevicius, Analysis of microstructures based on coherent optics methods, Vibroengineering 2006: proceedings of the 6th International Conference, October 12-14, 2006, Kaunas, Lithuania / Lithuanian Academy of Sciences, IFToMM National Committee, Kaunas University of Technology. - ISSN 1822-1262. - Kaunas. - 2006, pp.30-34.

DOI: 10.17113/ftb.54.01.16.4106

Google Scholar

[33] T. Tamulevicius, S. Tamulevicius, M. Andrulevicius, G. Janušas, A. Guobiene, Optical evaluation of geometrical parameters of micro-relief structures, Materials science = Medžiagotyra / Kaunas University of Technology, Academy of Sciences of Lithuania. - ISSN 1392-1320. - Kaunas, vol. 12, no. 4, 2006, pp.360-365.

Google Scholar

[34] G. Janusas, A. Guobiene, M. Andrulevicius, S. Tamulevicius, A. Palevicius, L. Puodziukynas, Diffraction measurements in quality control of periodic structures, Vibroengineering 2004: proceedings of 5th International Conference, October 14-15, 2004, Kaunas, Lithuania. - ISSN 1392-8716. - Kaunas. - 2004, pp.32-35.

Google Scholar

[35] T. Tamulevicius, S. Tamulevicius, M. Andrulevicius, G. Janusas, V. Ostasevicius, A. Palevicius, Optical characterization of microstructures of high aspect ratio, Proceedings of SPIE: Metrology, Inspection, and Process Controll for Microlithography XXI. - ISSN 0277-786X. - Bellingham, Vol. 6518, 2007, p. [1-9].

DOI: 10.1117/12.714245

Google Scholar