[1]
R. M de Ridder, A. Driessen, E. Rikkers, P.V. Lambeck, M.B.J. Diemeer, Design and fabrication of electro-optic polymer modulators and switches, Optical Materials, vol. 12, iss. 2-3, June 1999, pp.205-214.
DOI: 10.1016/s0925-3467(99)00048-8
Google Scholar
[2]
W.M.J. Green, M.J. Rooks, L. Sekaric, Y.A. Vlasov, Optical modulation using anti-crossing between paired amplitude and phase resonators, Optics Express, vol. 15, iss. 25, pp.17264-17272.
DOI: 10.1364/oe.15.017264
Google Scholar
[3]
G. Janusas, A. Palevicius, V. Ostasevicius, R. Bansevicius, A. Busilas, Development and experimental analysis of piezoelectric optical scanner with implemented periodical microstructure, Journal of Vibroengineering, Vol. 9, Issue 3, 2007 July/September, pp.10-14.
DOI: 10.1117/12.776762
Google Scholar
[4]
L.A. Kulakova, E.Z. Yakhkind, Acousto-optic modulator for IR diode laser radiation, J. Opt. A: Pure Appl. Opt.; no. 3, 2001, pp. S9-S11.
DOI: 10.1088/1464-4258/3/4/352
Google Scholar
[5]
T. Kondoh, H. Kashima, J. Yang, Y. Yoshida, Dynamic optical modulation of the electron beam for the high performance intensity modulated radiation therapy, Proceedings of PAC07, Albuquerque, New Mexico, USA, 2007, pp.2802-2804.
DOI: 10.1109/pac.2007.4440581
Google Scholar
[6]
X. Yu, X. Zheng, H. Zhang, Polarization state rotation filter for optical generation of continuously tunable millimeter-wave signal employing an external intensity modulator, Optical Fiber Technology, vol. 13, iss. 1, January 2007, pp.56-61.
DOI: 10.1016/j.yofte.2006.07.002
Google Scholar
[7]
B. Sepúlveda, G. Armelles, L.M. Lechuga, Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors, Sensors and Actuators A: Physical, vol. 134, iss. 2, 15 March 2007, pp.339-347.
DOI: 10.1016/j.sna.2006.05.046
Google Scholar
[8]
Y.L. Lo, T.C. Yu, A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal, Optics Communications, vol. 259, iss. 1, 1 March 2006, pp.40-48.
DOI: 10.1016/j.optcom.2005.08.061
Google Scholar
[9]
N. He, W. Jia, M. Gong, L. Huang, Design and mechanism analysis of a novel type compact single mirror laser scanner, Sensors and Actuators A: Physical, vol. 125(2), 2006, pp.482-485.
DOI: 10.1016/j.sna.2005.07.011
Google Scholar
[10]
X. Zhao, C. Zhou, L. Liu, Design of beam scanners based on Talbot-encoded phase plates, Optical Materials, vol. 23, iss. 1-2, July-August 2003, pp.313-318.
DOI: 10.1016/s0925-3467(02)00309-9
Google Scholar
[11]
J.T.W. Yeow, V.X.D. Yang, A. Chahwan, M.L. Gordon, B. Qi, I.A. Vitkin, B.C. Wilson, A.A. Goldenberg, Micromachined 2-D scanner for 3-D optical coherence tomography, Sensors and Actuators A: Physical, vol. 117, iss. 2, 14 January 2005, pp.331-340.
DOI: 10.1016/j.sna.2004.06.021
Google Scholar
[12]
G. Xu, Z. Liu, J. Ma, B. Liu, S.T. Ho, Organic electro-optic modulator using transparent conducting oxides as electrodes, Optics Express, vol. 13, iss. 19, pp.7380-7385.
DOI: 10.1364/opex.13.007380
Google Scholar
[13]
B.W. Barr, S.H. Huttner, J.R. Taylor, B. Sorazu, M.V. Plissi, K.A. Strain, Optical modulation techniques for length sensing and control of optical cavities, Appl Opt., 46 (31), 2007 Nov 1, pp.7739-7745.
DOI: 10.1364/ao.46.007739
Google Scholar
[14]
M. Gieler, F. Aumayr, R. Gaggl, C. Neureiter, L. Windholz, Application of an electro-optical modulator in inelastic collision studies with laser-excited Na*(3p) atoms, J. Phys. B: At. Mol. Opt. Phys., no. 26, 1993, pp.297-303.
DOI: 10.1088/0953-4075/26/2/013
Google Scholar
[15]
R. Steingrüber, M. Ferstl, W. Pilz, Micro-optical elements fabricated by electron-beam lithography and dry etching technique using top conductive coatings, Microelectronic Engineering, vol. 57-58, September 2001, pp.285-289.
DOI: 10.1016/s0167-9317(01)00497-x
Google Scholar
[16]
T.G. Harvey, N. Carter, M. Cinderey, D.E. Laidler, T.G. Ryan, P. Summersgill, Replication of free space micro-optical elements on glass substrates by UV-embossing, EOS Topical Meetings Digest, vol. 9, 1996, pp.20-21.
Google Scholar
[17]
P.W. Leech, R.A. Lee, A.B. Sexton, F. Smith, Hot embossing of micrographic elements in polypropylene, Microelectronic Engineering, vol. 84, iss. 1, January 2007, pp.109-113.
DOI: 10.1016/j.mee.2006.08.010
Google Scholar
[18]
M. Trinker, E. Jericha, R. Loidl, H. Rauch, Microfabricated silicon gratings as neutron-optical components, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 586, iss. 1, 11 February 2008, pp.124-128.
DOI: 10.1016/j.nima.2007.11.042
Google Scholar
[19]
D. Content, Diffraction grating groove analysis used to predict efficiency and scatter performance, SPIE Proceedings, in Conference on Gradient Index, Miniature, and Diffractive Optical Systems, vol. 3778, 1999, pp.19-30.
DOI: 10.1117/12.363756
Google Scholar
[20]
Software PCGrate, (www. pcgrate. com).
Google Scholar
[21]
Software GSolver, (http: /www. gsolver. com/).
Google Scholar
[22]
L.I. Goray, J.F. Seely, Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method nd comparisons with measurements, Applied Optics, vol. 41, no. 7, 2002, pp.1434-1445.
DOI: 10.1364/ao.41.001434
Google Scholar
[23]
L.I. Goray, Rigorous integral method in application to computing diffraction on relief gratings working in wavelength range from microwave to X-ray, Application theory of periodic Structures, SPIE Proceedings, vol. 2532, 1995, pp.427-433.
DOI: 10.1117/12.221255
Google Scholar
[24]
L.I. Goray, Modified integral method for weak convergence problems of light scattering on relief grating, Diffractive and Holographic Technologies for Integrated Photonic Systems, SPIE Proceedings, vol. 4291, 2001, pp.1-12.
DOI: 10.1117/12.424838
Google Scholar
[25]
L.I. Goray, B.C. Chernov, Comparison of rigorous methods for X-ray and XUV gratings diffraction analysis, X-ray and Extreme Ultraviolet Optics, SPIE Proceedings, vol. 2515, 1995, pp.240-245.
DOI: 10.1117/12.212594
Google Scholar
[26]
M.G. Moharam, D.A. Pommet, E.B. Grann, T.K. Gaylord, Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings enhanced transmittance matrix approach, J. Opt. Soc. Am A 12, 1995, pp.1077-1085.
DOI: 10.1364/josaa.12.001077
Google Scholar
[27]
M.G. Van Kraaij, J.M.L. Maubach, A More Efficient Rigorous Coupled-Wave Analysis Algorithm, Progress in Industrial Mathematics at ECMI, vol. 8, 2004, pp.164-168.
DOI: 10.1007/3-540-28073-1_21
Google Scholar
[28]
A. Palevicius, G. Janusas, B. Narijauskaite, M. Mikolajunas, D. Virzonis, Implementation of computer-generated holograms using 3D electron beam lithography, Journal of Vibroengineering / Vibromechanika, vol. 11, no. 3, 2009, pp.407-414.
Google Scholar
[29]
T. Tamulevicius, S. Tamulevičius, M. Andrulevicius, E. Griskonis, L. Puodziukynas, G. Janusas, A. Guobiene, Formation of periodical microstructures using interference lithography, Experimental Techniques, doi: 10. 1111/j. 1747-1567. 2007. 00291. x, 2007, pp.1-6.
DOI: 10.1111/j.1747-1567.2007.00291.x
Google Scholar
[30]
S. Tamulevicius, A. Guobiene, G. Janusas, A. Palevicius, V. Ostasevicius, M. Andrulevicius, Optical characterization of diffractive optical elements replicated in polymers, Journal of Microlithography, Microfabrication and Microsystems, ISSN 1537-1646, Bellingham, vol. 5, no. 1, 2006, p.013004.
DOI: 10.1117/12.597628
Google Scholar
[31]
G. Janusas, A. Palevicius, A. Bubulis, Numerical analysis of holographic plate stability, Vibroengineering 2008: proceedings of the 7th International Conference, Kaunas University of Technology, Lithuania, 2008, pp.83-86.
Google Scholar
[32]
G. Janusas, K. Daucanskiene, S. Tamulevicius, A. Palevicius, T. Tamulevicius, Analysis of microstructures based on coherent optics methods, Vibroengineering 2006: proceedings of the 6th International Conference, October 12-14, 2006, Kaunas, Lithuania / Lithuanian Academy of Sciences, IFToMM National Committee, Kaunas University of Technology. - ISSN 1822-1262. - Kaunas. - 2006, pp.30-34.
DOI: 10.17113/ftb.54.01.16.4106
Google Scholar
[33]
T. Tamulevicius, S. Tamulevicius, M. Andrulevicius, G. Janušas, A. Guobiene, Optical evaluation of geometrical parameters of micro-relief structures, Materials science = Medžiagotyra / Kaunas University of Technology, Academy of Sciences of Lithuania. - ISSN 1392-1320. - Kaunas, vol. 12, no. 4, 2006, pp.360-365.
Google Scholar
[34]
G. Janusas, A. Guobiene, M. Andrulevicius, S. Tamulevicius, A. Palevicius, L. Puodziukynas, Diffraction measurements in quality control of periodic structures, Vibroengineering 2004: proceedings of 5th International Conference, October 14-15, 2004, Kaunas, Lithuania. - ISSN 1392-8716. - Kaunas. - 2004, pp.32-35.
Google Scholar
[35]
T. Tamulevicius, S. Tamulevicius, M. Andrulevicius, G. Janusas, V. Ostasevicius, A. Palevicius, Optical characterization of microstructures of high aspect ratio, Proceedings of SPIE: Metrology, Inspection, and Process Controll for Microlithography XXI. - ISSN 0277-786X. - Bellingham, Vol. 6518, 2007, p. [1-9].
DOI: 10.1117/12.714245
Google Scholar