[1]
Carlton, L. G., 1979. Control processes in the production of discrete aiming responses. Journal of human movement studies 5, 115–124.
Google Scholar
[2]
Crossman, E.R.F.W., 1983. Feedback control of hand-movement and Fitts' Law. Quarterly journal of experimental psychology 35A, 251-278.
DOI: 10.1080/14640748308402133
Google Scholar
[3]
Du JM, Yuan XG, Shi HW., 2007. A Study of Pointing Movement Characteristics and Ergonomics on Front Board. Space medicine and medical engineering 20(1), 62-67.
Google Scholar
[4]
Fitts, P.M., 1954. The information capacity of the human motor system in controlling the amplitude of movement. Journal of experimental psychology 47(6), 381-391.
DOI: 10.1037/h0055392
Google Scholar
[5]
Jagacinski, R. J., Repperger, D. W., Moran, M. S., Ward, S. L., Glass, B., 1980. Fitts'law and the microstructure of rapid discrete movements. Journal of experimental psychology: human perception and performance 6, 309–320.
DOI: 10.1037/0096-1523.6.2.309
Google Scholar
[6]
Iwase, H., Murata, A., 2001. Modelling of human's three-dimensional movement-extending Fitts' model to three-dimensional pointing task. IEEE international worksop on robot and human interactive communication. 594-599.
DOI: 10.1109/roman.2001.981969
Google Scholar
[7]
Kevin M. B, Errol R. H, Colin G. D, 2002. The effects of probe length on Fitts'law. Applied ergonomics 33, 9-14.
Google Scholar
[8]
Langolf, G. D., Chaffin, D. B., Foulke, J. A., 1976. An investigation of Fitts' law using a wide range of movement amplitudes. Journal of Motor Behavior 8, 113–128.
DOI: 10.1080/00222895.1976.10735061
Google Scholar
[9]
MacKenzie, I.S., Buxton, W., 1992. Extending Fitts' law to two-dimensional tasks. Proceedings of the CHI'92 conference on Human Factors in computing Systems, 219-226.
DOI: 10.1145/142750.142794
Google Scholar
[10]
Meyer, D.E., 1988. Optimality in human motor performance: ideal control of rapid aimed movements. Psychological review 95, 340-370.
DOI: 10.1037/0033-295x.95.3.340
Google Scholar
[11]
Murata, A., Iwase, H., 2001. Extending Fitts' law to a three-dimensional pointing task. Human movement science 20, 791-805.
DOI: 10.1016/s0167-9457(01)00058-6
Google Scholar
[12]
Plamondon R., 1995. A kinematic theory of rapid human movements: Movement representation and generation. Biological cybernetics 72, 295-320.
DOI: 10.1007/bf00202785
Google Scholar
[13]
Reinoud J. B., Marion B., Laure F., Denis M., 2002. Informational constraints in human precision aiming. Neuroscience Letters 333, 141–145.
DOI: 10.1016/s0304-3940(02)01003-0
Google Scholar
[14]
Schmidt, R.A., 1969. Movement time as a determiner of timing accuracy, Journal of experimental psychology 79, 43-47.
DOI: 10.1037/h0026891
Google Scholar
[15]
Slobodan J., Mark L. L., 1999. Learning a pointing task with a kinematically redundant limb: emerging synergies and patterns of final position variability. Human Movement Science 18, 819-838.
DOI: 10.1016/s0167-9457(99)00042-1
Google Scholar
[16]
Van Galen, G. P., De Jong, W. P., 1995. Fitts' law as the outcome of a dynamic noise filtering. Human Movement Science 14, 539–571.
DOI: 10.1016/0167-9457(95)00027-3
Google Scholar
[17]
Zhai, S., Kong, J., Ren, X., 2004. Speed-accuracy tradeoff in Fitts' law tasks – on the equivalency of actual and nominal pointing precision. International journal of human-computer studies 61, 823-856. Figures Fig. 1 The location of the target-circles on the board O1 O2 O3 O4 O5 O6 O7 O8 O9 Fig. 2 The distribution of the targets on a single target-circle 1 8 2 7 O 3 6 4 5 0° 45° 90° 135° 180° 225° 270° 315° Fig. 5 Relationship between the index of difficulty and the movement time using Eq. (4) (R2=0. 1163) Fig. 6 The movement time of middle column target-circles Fig. 7 The movement time of middle column target-circles Fig. 8 Relationship between the index of difficulty and the movement time using Eq. (8)(R2=0. 7459).
DOI: 10.1016/j.ijhcs.2004.09.007
Google Scholar