[1]
V.L. Kharitonov. Asymptotic stability of an equilibrium position of a family of systems of linear differential equations[J]. Differential'nye Uraveniya, 1978, 14(11): 2086-(2088).
Google Scholar
[2]
V.L. Kharitonov. On a generalization of a stability criterion[J]. Izv. Akad. Naud. Kazakh. USSR Ser. Fiz. Mat., 1987, 1: 53-57.
Google Scholar
[3]
Anderson, E.I. Jury, M. Mansour. On robust polynomials [J], IEEE Trans. On Auto . contr, 1987, AC-32(10): 909~913.
DOI: 10.1109/tac.1987.1104459
Google Scholar
[4]
A.C. Bartlett, C, V, Hollot, and L. Huang. Root location of an entire polytope of polynomials: it suffices to check the edges[J]. Mathematics in Control, Signals and Systems, 1987, Vol, 1: pp.61-71.
DOI: 10.1007/bf02551236
Google Scholar
[5]
Lin Huang. Stability of families of polynomials : geometric considerations in coefficient space[J]. Int.J. of Control, 1987, 2(45): 649-660.
DOI: 10.1080/00207178708933757
Google Scholar
[6]
Qinghe Wu, and M. Mansour. Kharitonov theorem and small –methodology[J]. Proc. 12th Triennial World Congress of the IFAC (Sydney, Australian) , 1993, pp.365-369.
Google Scholar
[7]
Qinghe Wu. Computation of stability radius of a huriwitz polynomial with diamond-like uncertainties[J]. Systems and Control Letters 35, 1998, 45-60.
DOI: 10.1016/s0167-6911(98)00028-0
Google Scholar
[8]
F.G. Boese, W.J. Luther. A Note on a Classical Bound for the Moduli of all Zeros of Polynomial[J]. IEEE Trans. Autom. Control . 1989, 34, pp.998-1001.
DOI: 10.1109/9.35817
Google Scholar
[9]
B. Datt, N.K. Govil. On the Location of Zeros of Polynomial[J]. J. Approx Theory, 1978, 24, pp.78-82.
DOI: 10.1016/0021-9045(78)90037-0
Google Scholar
[10]
A. Joyal, G. Labelle, and Q.I. Rahman. On the Locations of Zeros of Polynomials[J], Canadian Math Bulletin, 1967, 10, pp.53-63.
DOI: 10.4153/cmb-1967-006-3
Google Scholar
[11]
Y.J. Sun, J.G. Hsieh. A Note on the Circular Bound of Polynomial Zeros[J]. IEEE Trans. Circuits Syst., 1996, 43, pp.476-478.
DOI: 10.1109/81.503258
Google Scholar
[12]
M.S. Zilovic, L.M. Roytman, P.L. Combettes, and M.N.S. Swamy. A Bound for the Zeros of Polynomial[J]. IEEE, Trans, Circuits Syst, 1992, 39, pp.476-478.
DOI: 10.1109/81.153643
Google Scholar
[13]
L. Qiu and E.J. Davison. A simple procedure for the exact stability robustness computation of polynomials with affine coefficient perturbations[J], Syst, &Control Letters 13, 1989, 413-420.
DOI: 10.1016/0167-6911(89)90108-4
Google Scholar
[14]
Q.H. Wu. Robust stability analysis of control systems with interval plants[J], Int.J. Control 2001, 74(9), 921-937.
DOI: 10.1080/00207170110038721
Google Scholar
[15]
Q.H. Wu, M. Mansour. Robust stability of family of polynomials with 1-norm-bounded parameter uncertainties, Stability Theory: Hurwitz Centenary Conference[J], International Series of Numerical Mathematics, 1996, 121.
DOI: 10.1007/978-3-0348-9208-7_17
Google Scholar
[16]
B.R. Barmish, R. Ortega. On the radius of stabilizability of LTI systems: Application to projection implementation in indirect adaptive control[J]. International Journal of Adaptive and Signal Processing 5, 1991, 251-258.
DOI: 10.1002/acs.4480050403
Google Scholar