Research on Distribution of Zeros and Poles for Plant Family with Parametric Uncertainty

Article Preview

Abstract:

This paper considers the distribution of zeros and poles of plant family with parametric uncertainty. The relationship between the coefficients and the roots of a polynomial is also discussed. The computation of the distributions of spherical plant family is illustrated in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

2367-2371

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.L. Kharitonov. Asymptotic stability of an equilibrium position of a family of systems of linear differential equations[J]. Differential'nye Uraveniya, 1978, 14(11): 2086-(2088).

Google Scholar

[2] V.L. Kharitonov. On a generalization of a stability criterion[J]. Izv. Akad. Naud. Kazakh. USSR Ser. Fiz. Mat., 1987, 1: 53-57.

Google Scholar

[3] Anderson, E.I. Jury, M. Mansour. On robust polynomials [J], IEEE Trans. On Auto . contr, 1987, AC-32(10): 909~913.

DOI: 10.1109/tac.1987.1104459

Google Scholar

[4] A.C. Bartlett, C, V, Hollot, and L. Huang. Root location of an entire polytope of polynomials: it suffices to check the edges[J]. Mathematics in Control, Signals and Systems, 1987, Vol, 1: pp.61-71.

DOI: 10.1007/bf02551236

Google Scholar

[5] Lin Huang. Stability of families of polynomials : geometric considerations in coefficient space[J]. Int.J. of Control, 1987, 2(45): 649-660.

DOI: 10.1080/00207178708933757

Google Scholar

[6] Qinghe Wu, and M. Mansour. Kharitonov theorem and small –methodology[J]. Proc. 12th Triennial World Congress of the IFAC (Sydney, Australian) , 1993, pp.365-369.

Google Scholar

[7] Qinghe Wu. Computation of stability radius of a huriwitz polynomial with diamond-like uncertainties[J]. Systems and Control Letters 35, 1998, 45-60.

DOI: 10.1016/s0167-6911(98)00028-0

Google Scholar

[8] F.G. Boese, W.J. Luther. A Note on a Classical Bound for the Moduli of all Zeros of Polynomial[J]. IEEE Trans. Autom. Control . 1989, 34, pp.998-1001.

DOI: 10.1109/9.35817

Google Scholar

[9] B. Datt, N.K. Govil. On the Location of Zeros of Polynomial[J]. J. Approx Theory, 1978, 24, pp.78-82.

DOI: 10.1016/0021-9045(78)90037-0

Google Scholar

[10] A. Joyal, G. Labelle, and Q.I. Rahman. On the Locations of Zeros of Polynomials[J], Canadian Math Bulletin, 1967, 10, pp.53-63.

DOI: 10.4153/cmb-1967-006-3

Google Scholar

[11] Y.J. Sun, J.G. Hsieh. A Note on the Circular Bound of Polynomial Zeros[J]. IEEE Trans. Circuits Syst., 1996, 43, pp.476-478.

DOI: 10.1109/81.503258

Google Scholar

[12] M.S. Zilovic, L.M. Roytman, P.L. Combettes, and M.N.S. Swamy. A Bound for the Zeros of Polynomial[J]. IEEE, Trans, Circuits Syst, 1992, 39, pp.476-478.

DOI: 10.1109/81.153643

Google Scholar

[13] L. Qiu and E.J. Davison. A simple procedure for the exact stability robustness computation of polynomials with affine coefficient perturbations[J], Syst, &Control Letters 13, 1989, 413-420.

DOI: 10.1016/0167-6911(89)90108-4

Google Scholar

[14] Q.H. Wu. Robust stability analysis of control systems with interval plants[J], Int.J. Control 2001, 74(9), 921-937.

DOI: 10.1080/00207170110038721

Google Scholar

[15] Q.H. Wu, M. Mansour. Robust stability of family of polynomials with 1-norm-bounded parameter uncertainties, Stability Theory: Hurwitz Centenary Conference[J], International Series of Numerical Mathematics, 1996, 121.

DOI: 10.1007/978-3-0348-9208-7_17

Google Scholar

[16] B.R. Barmish, R. Ortega. On the radius of stabilizability of LTI systems: Application to projection implementation in indirect adaptive control[J]. International Journal of Adaptive and Signal Processing 5, 1991, 251-258.

DOI: 10.1002/acs.4480050403

Google Scholar