[1]
Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge, UK: Cambridge University Press.
Google Scholar
[2]
Scholkopf, B., Burges, C., & Smola, A. J. (1998). Advances in kernel methods: Support vector learning. Cambridge, UK: Cambridge University Press.
DOI: 10.1016/s0925-2312(01)00684-1
Google Scholar
[3]
C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Disc. 2 (2) (1998) 121-167.
Google Scholar
[4]
J. -H. Chen, C. -S. Chen, Fuzzy kernel pecreptron, IEEE Trans. Neural Networks 13 (6) (2002) 1364–1373.
Google Scholar
[5]
Smola, A. J., Bartlett, P. L., Scholkopf, B., & Schuurmans, D. (2000). Advances in large margin classifiers. Cambridge, MA: MIT Press.
Google Scholar
[6]
C. Cortes, V.N. Vapnik, Support vector networks, Mach. Learning 20 (3) (1995) 273–297.
DOI: 10.1007/bf00994018
Google Scholar
[7]
G. Fung, O.L. Mangasarian, Proximal support vector machine classi1ers, in: D. Lee, et al. (Eds. ), Proceedings of the KDD-2001: Knowledge Discovery and Data Mining, San Francisco, California, Association for Computing Machinery, New York, 2001, p.77.
DOI: 10.1145/502512.502527
Google Scholar
[8]
Boser, B.E., Guyon, I., Vapnik, V., 1992. A training algorithm for optimal margin classifiers. Comput. Learn. Theor, 144–152.
DOI: 10.1145/130385.130401
Google Scholar
[9]
T. Inoue, S. Abe, Fuzzy support vector machines for pattern classi1cation, Proceedings of the International Joint Conference on Neural Networks, Washington DC, July 15C19, 2001, p.1449–1454.
Google Scholar
[10]
J.M. Keller, D.J. Hunt, Incorporating fuzzy membership functions into the perception algorithm, IEEE Trans. Patt. Anal. Mach. Intell. 7 (6) (1985) 693–699.
DOI: 10.1109/tpami.1985.4767725
Google Scholar
[11]
C. -F. Lin, S. -D. Wang, Fuzzy support vector machines, IEEE Trans. Neural Networks 13 (2) (2002) 464–471.
DOI: 10.1109/72.991432
Google Scholar
[12]
Zhang, X., 1999. Using class-center vectors to build support vector machines. Neural Networks Signal Process. 3–11.
DOI: 10.1109/nnsp.1999.788117
Google Scholar
[13]
Cao, L.J., Lee, H.P., Chong, W.K., 2003. Modified support vector novelty detector using training data with outliers. Pattern Recogn. Lett. 24, 2479–2487.
DOI: 10.1016/s0167-8655(03)00093-x
Google Scholar
[14]
Lin, C. -F., Wang, S. -D., 2002. Fuzzysupport vector machines. IEEE Trans. Neural Networks 13 (2), 464–471.
Google Scholar
[15]
Lin, C. -F., Wang, S. -D., 2004. Training algorithms for fuzzy support vector machines with noisy data. Pattern Recognition Letters 25(2004) 1647–1656 IEEE Trans. Neural Networks 13 (2), 464–471.
DOI: 10.1016/j.patrec.2004.06.009
Google Scholar
[16]
J. Mill, A. Inoue, An application of fuzzy support vectors, Proceedings of the 22nd North American Fuzzy Information Processing Society, Chicago, Illinois, July 24–26, 2003, p.302–306.
DOI: 10.1109/nafips.2003.1226801
Google Scholar
[17]
D. Tsujinishi, S. Abe, Fuzzy least squares support vector machines, Proceedings of the International Joint Conference on Neural Networks, Portland, Oregon, July 20–24, 2003, p.1599–1604.
DOI: 10.1109/ijcnn.2003.1223938
Google Scholar
[18]
John Shawe–Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis, Cambridge, UK: Cambridge University Press.
Google Scholar
[19]
T. Hastie, S. Rosset, R. Tibshirani, J. Zhu, The entire regularization path for the support vector machine, J. Mach. Learn. Res. 5 (2004) 1391C1415.
Google Scholar