First Principles Study of Surface Properties for Silicon Carbide-Derived Structures

Article Preview

Abstract:

Using first-principles ultra-soft pseudo-potential approach of the plane wave based on the density functional theory (DFT), we investigated the surface properties for silicon carbide-derived structure (i.e. SiCDS). The calculated results show that, movement of C and Si atoms caused by Si removal results in surface structural changing, and a nanoporous surface feature can be observed on the SiCDS surfaces when more Si atoms are removed. The mulliken population analysis indicates that the Si removal leads to the stronger chemical bonds between C–Si and the formation of new stronger chemical bands between C–C. From the density of states, as the Si removal proportion increases, C2p becomes gradually dominant in the SiCDS surface state electrons. Moreover, the Si removal leads to evidently different band gaps, indicating that the conductivity for SiCDS surface structures can be adjusted through the Si removal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

306-312

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Gogotsi, S. Welz, D.A. Ersoy, M.J. McNallan. Nature. 411 (2001) 283–7.

Google Scholar

[2] S. Welz, M.J. McNallan, Y. Gogotsi. J. Mater. Process. Technol. 179 (2006) 11–22.

Google Scholar

[3] G.N. Yushin, E.N. Hoffman, A. Nikitin, H.H. Ye, M.W. Barsoum, Y. Gogotsi. Carbon. 43 (2005) 2075–82.

Google Scholar

[4] E.N. Hoffman, G.N. Yushin, B.G. Wendler, M.W. Barsoum, Y. Gogotsi. Mater. Chem. Phys. 112 (2008) 587–591.

Google Scholar

[5] H.L. Wang, Q.M. Gao. Carbon. 47 (2009) 820–828.

Google Scholar

[6] Z. Yang, Y. Xia, R. Mokaya. J Am Chem Soc. 129(2007) 1673–9.

Google Scholar

[7] M. Käärik, M. Arulepp, M. Karelson, J. Leis. Carbon. 46 (2008) 1579–1587.

DOI: 10.1016/j.carbon.2008.07.003

Google Scholar

[8] T. Thomberg, A. Jänes, E. Lust. J. Electroanal. Chem. 630 (2009) 55–62.

Google Scholar

[9] A. Jänes , T. Thomberg, E. Lust. Carbon. 45 (2007) 2717–2722.

Google Scholar

[10] A. Jänes, L. Permann, M. Arulepp, E. Lust. Electrochem. Commun. 6 (2004) 313–318.

Google Scholar

[11] M. Seredych, C. Portet, Y. Gogotsi, J. Teresa. J. Bandosz. Colloid Interface Sci. 330 (2009) 60–66.

DOI: 10.1016/j.jcis.2008.10.022

Google Scholar

[12] R.K. Dash, A. Nikitin, Y. Gogotsi. Micropor Mesopor Mater. 72 (2004) 203–8.

Google Scholar

[13] R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, et al. Carbon. 44 (2006) 2489–97.

DOI: 10.1016/j.carbon.2006.04.035

Google Scholar

[14] R.K. Dash, G. Yushin, Y. Gogotsi. Micropor Mesopor Mater. 86 (2005) 50–7.

Google Scholar

[15] H.Y. Jin, R.J. Zhang, Q.X. Liu, Materials Letters 64 (2010) 1019-1021.

Google Scholar

[16] M. Jochum, U. Werner-Zwanziger, J.W. Zwanziger. J Chem Phys. 128 (2008) 052304–10.

Google Scholar

[17] J. Rose´n, J.M. Schneider, K. Larsson. Solid State Commun. 135 (2005) 90–4.

Google Scholar

[18] D.L. Bryce, E.B. Bultz, D. Aebi. J Am Chem Soc. 130 (2008) 9282–92.

Google Scholar

[19] W.D. Dou, J.B. Zhu, Q. Liao, H.J. Zhang, P.M. He, S.N. Bao. J Chem Phys. 128 (2008) 244706.

Google Scholar

[20] Yun Li, Ling Ye, Xun Wang. Surface Science 600 (2006) 298–304.

Google Scholar

[21] M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, J.D. Joannopoulos. Rev Mod Phys. 64 (1992) 1045–97.

Google Scholar

[22] P. Hohenberg, W. Kohn. Phys Rev (B). 136 (1964) 864–71.

Google Scholar

[23] Fu Liu, Jicheng Zhou, Xiaochao Tan. ACTA PHYSICAL SINICA 58 (2009) 7821-05.

Google Scholar

[24] D.M. Cerperley, B.J. Alder. Phys Rev Lett. 45 (1980) 566.

Google Scholar

[25] B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131 (1997) 133-140.

Google Scholar

[26] A. Linares-Solano, D. Lozano-Castello´, M.A. Lillo-Ro´denas, D. Cazorla-Amoro´s, Chem. Phys. Carbon 30 (2007).

Google Scholar

[27] S. Osswald, C. Portet, Y. Gogotsi. Journal of Solid State Chemistry 182 (2009) 1733–1741.

Google Scholar

[28] Y.G. Gogotsi, P. Kofstad, K.G. Nickel, M. Yoshimura, Diamond Relat. Mater. 5 (2) (1996) 151–162.

Google Scholar

[29] M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Phys. Rev. B 54 (1996) 16317.

Google Scholar

[30] B. Xiao, J. Feng, J.C. Chen, L. Yu, Chemical Physics Letters 448 (2007) 35–40.

Google Scholar