[1]
R. Isaacs, Differential Games. New York: Wiley, (1965).
Google Scholar
[2]
Krikelis N J, Rekasius Z V, On the solution of the optimal linear control problems under conflict of interest, IEEE Transactions on Automatic Control. New York, vol. AC-16(2) , pp.140-147, April (1971).
DOI: 10.1109/tac.1971.1099685
Google Scholar
[3]
P. Zhang, Some results on two-person zero-sum linear quadratic differential games, SIAM J. Control Optim. vol. 43(6), pp.2157-2165, (2005).
DOI: 10.1137/s036301290342560x
Google Scholar
[4]
Michel C. Delfour, Linear quadratic differential games: saddle point and Riccati differential equation, SIAM J. Control Optim. vol. 46(2), pp.750-774, (2007).
DOI: 10.1137/050639089
Google Scholar
[5]
Lukoyanov N Y, A Hamilton-Jacobi type equation in control problems with hereditary information, J Math Anal Appl. vol. 64(2), pp.243-253, (2000).
DOI: 10.1016/s0021-8928(00)00046-0
Google Scholar
[6]
Van D and Broek W A, Moving horizon control in dynamic games, J Economic &Control. vol. 26(6), pp.937-961, (2002).
DOI: 10.1016/s0165-1889(01)00004-5
Google Scholar
[7]
Libin Mou and Jiongmin Yong, Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method, J Industrial & Management Optimization. vol. 2(1), pp.93-115, February (2006).
DOI: 10.3934/jimo.2006.2.95
Google Scholar
[8]
Michael McAsey and Libin Mou, Generalized Riccati equations arising in stochastic games, Linear Algebra & its Applications. vol. 416(2-3), pp.710-723, July (2006).
DOI: 10.1016/j.laa.2005.12.011
Google Scholar
[9]
J. Yong, A leader-follower stochastic linear quadratic differential game, SIAM J. Control Optim. vol. 41, pp.1015-1041, (2002).
DOI: 10.1137/s0363012901391925
Google Scholar
[10]
M. Ait Rami, J. B. Moore and X. Y. Zhou, Indefinite stochastic linear quadratic control and generalized differential Riccati equation, SIAM J. Control Optim. vol. 40(2), pp.1296-1311, (2001).
DOI: 10.1137/s0363012900371083
Google Scholar
[11]
M. Ait Rami, X. Chen, J. B. Moore and X. Y. Zhou, Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls, IEEE Transactions on Automatic Control. Vol. 46, pp.428-440, (2001).
DOI: 10.1109/9.911419
Google Scholar
[12]
D. H. Jacobson, D. H. Martin, M. Pachter and T. Geveci, Extensions of linear-quadratic control theory, Lecture Notes in Control and Information Sciences 27, Springer-Verlag, (1980).
DOI: 10.1007/bfb0004370
Google Scholar
[13]
Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Springer-Verlag, (1991).
Google Scholar