[1]
M.L. Wang. Solitary wave solutions for variant Boussinesq Equations, . Phys. Lett. A, 1995, 199: 169.
Google Scholar
[2]
M.L. Wang. Exact solutions for a compound KdV-Burgers equation,. Phys. LettA, 1996, 213: 279.
Google Scholar
[3]
M.L. Malfliet. solitary wave solutions of nonlinear wave Equations,. Phys. Lett. A, 1992, 60: 650.
Google Scholar
[4]
E.J. Parkes, B.R. Duffy. Travelling solitary wave solutions to a compound KdV-Burgers equation, . Phys. Lett. A, 1997, 229 : 217.
DOI: 10.1016/s0375-9601(97)00193-x
Google Scholar
[5]
E.J. Parkes, B.R. Duffy. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations,. Comp Phys Commun, 1996, 98: 288.
DOI: 10.1016/0010-4655(96)00104-x
Google Scholar
[6]
E.G. Fan, H.Q. Zhang. A note on the homogeneous balance Method,. Phys. Lett. A 246, 1998: 403.
Google Scholar
[7]
C.T. Yan. . A simple transformation for nonlinear waves,. Phys. Lett. A, 1996, 224: 77.
Google Scholar
[8]
Y. Zhang, H.Q. Zhang. Explicit Travelling Wave Solutions to Nonlinear Equation,. Acta Physica Sinica(in Chinese), 2000, 49: 389.
Google Scholar
[9]
D.B. Cao. New exact solutions for a class of nonlinear coupled differential equations, . Phys. Lett. A , 2002, 296: 27.
Google Scholar
[10]
D.B. Cao, J. R. Yan, Y. Zhang. Exact solutions for a new coupled MKdV equations and a coupled KdV equations, Phys. Lett. A , 2002, 297: 68.
DOI: 10.1016/s0375-9601(02)00376-6
Google Scholar
[11]
W. T . Wu. Polyomial Equation-Solving and Its Applicatio Algorithms and Computation, . Springer , Berlin, 1994. 1.
Google Scholar