[1]
Kanade T, Okutomi M. A Stereo Matching Algorithm with an Adaptive Window Theory and Experiment [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1994, 16(9): 920-932.
DOI: 10.1109/34.310690
Google Scholar
[2]
Roberto F V, Trucco E. Efficient Stereo with Multiple Windowing[C]/Proc. of IEEE Conference on Computer Vision and Pattern Recognition. [S. l. ]: IEEE Computer Society Press, (1997).
DOI: 10.1109/cvpr.1997.609428
Google Scholar
[3]
S. B. Kang, R. Szeliski, and J. Chai, Handling occlusions in dense multi-view stereo, in Proc. IEEE Conf. Comput. Vision Pattern Recognition, vol. 1, 2001, p.103–110.
DOI: 10.1109/cvpr.2001.990462
Google Scholar
[4]
Chan S, Wong Y, and Danie J. Dense Stereo Correspondence Based on Recursive Adaptive Size Multi-Windowing[C]/Image and Vision Computing New Zealand 2003, Massey University, Palmerston North, New Zealand , 2003 . November 26-28 , 1: 256-260.
Google Scholar
[5]
VEKSLER O. Fast variable window for stereo correspondence using integral image[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 2003: 556-561.
DOI: 10.1109/cvpr.2003.1211403
Google Scholar
[6]
K. Zhang, J. Lu, and G. Lafruit, Cross-based local stereo matching using orthogonal integral images, IEEE TCSVT, to appear.
Google Scholar
[7]
Ojala T, Pietikainen M, Maenpaa T. Multirere solution Gray Sale and Rotation Invariant Texture Classification with local Binary Patterns. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
DOI: 10.1109/tpami.2002.1017623
Google Scholar
[8]
Deng Y, Manjunath B S. Unsupervised Segmentation of Color-Texture Regions in Image sand Video. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(8): 800-810.
DOI: 10.1109/34.946985
Google Scholar
[9]
Gu Zheng, Su Xianyu. An Algorithm Based on Adaptive Support-Weight and Disparity Adjustment for Trinocular Stereo-Matching [J]. ACTA OPTICA SINICA, 2008, 28(4): 734-738. (in Chinese).
DOI: 10.3788/aos20082804.0734
Google Scholar
[10]
Kuk-jin Yoon, In So Kweon. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656.
DOI: 10.1109/tpami.2006.70
Google Scholar
[11]
SC HA RSTEIN D, SZEL IS KI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002, 47(1-3): 7-42.
Google Scholar