[1]
Ness J E V, Brash F M, Landgren G L et al, Analytic investigation of dynamic instability occurring at power station. IEEE Trans PAS, Vol. 99, 1980, pp.1386-1395.
DOI: 10.1109/tpas.1980.319561
Google Scholar
[2]
Abed E, Varaiya P. Nonlinear oscillations in power systems. Int. J. Electric power & Energy systems, Vol. 6, 1984, pp.37-43.
DOI: 10.1016/0142-0615(84)90034-6
Google Scholar
[3]
Alexander J C, Oscillatory solutions of a model system of nonlinear swing equations. Int. J. Electric power & Energy systems, Vol. 18, 1986, pp.130-136.
DOI: 10.1016/0142-0615(86)90027-x
Google Scholar
[4]
Hiskens, I. A. Analysis tool for power systems-Contending with nonlinearities. Proceedings of the IEEE, Vol. 83, No. 11, 1995, pp.1573-1587.
DOI: 10.1109/5.481635
Google Scholar
[5]
Lee B, Ajjarapu V. Period-doubling route to chaos in an electrical power system. IEE. Proceedings-C, Vol. 140, No. 6, 1993, pp.490-496.
DOI: 10.1049/ip-c.1993.0071
Google Scholar
[6]
V. Venkatasubramanian, H. Schãttler, J. Zaborszky. Voltage Dynamics: Study of a generator with voltage control, transmission, and matched WM load. IEEE Trans on Automatic Control, Vol. 37, No. 11, 1992, pp.1717-1733.
DOI: 10.1109/9.173142
Google Scholar
[7]
William D. Rosehart, Claudio A Canizares. Bifurcation analysis of various power system models. Electrical Power and Energy Systems, Vol. 21, 1999, p.171–182.
DOI: 10.1016/s0142-0615(98)00037-4
Google Scholar
[8]
J. Barauin, T. Gomez, and F. L. pagola. Estimating the loading limit margin taking into account voltage collapse areas. IEEE Trans. Power Syst., Vol. 10, No. 4, 1995, p.1952–(1962).
DOI: 10.1109/59.476063
Google Scholar
[9]
A Griewank,G Redien.The calculation of Hopf points by a direct method[J].IMA J,Numer.Anal.1983,3:295-303.
Google Scholar
[10]
M Holdniok,M Kubicek.New algorithms for the evaluation of complex bifurcation points in ordinary differential equations[J].A comparative numerical study,Appl.Math.Comp.1984,15:261-274.
Google Scholar
[11]
A new algorithm for the computation of low frequency electromechanical oscillation modes of large power systems[J].Proceedings of the CSEE,2000,20(9):50-54.
Google Scholar
[12]
Gene H. Golub, Charles F. Van Loan. Matrix computation[M]. The Johns Hopkins University Press, (1996).
Google Scholar
[13]
Y. Saad. Numerical Solution of Large Nonsymmetric Eigenvalue Problems[J]. Comput. Phys. Commun, 1989, 53: 71-90.
DOI: 10.1016/0010-4655(89)90149-5
Google Scholar
[14]
Y. Saad. Variations on Arnoldi's Method for Computing Eigenelements of Large Unsymmetric Matrices[J]. Linear Algebra and its Applications, 1980, 34: 269-295.
DOI: 10.1016/0024-3795(80)90169-x
Google Scholar
[15]
Jia Zhong-xiao, Chen Gui-zhi. A variant of the refined Arnoldi method for large scale matrix eigenproblems[J] 2003, (2): 102-110.
Google Scholar
[16]
Z. Jia. A refined iterative algorithm based on the block Arnoldi process for large unsymmetric eigenproblems[J]. Linear Algebra Appl., 1998, 270: 171-189.
DOI: 10.1016/s0024-3795(97)00023-2
Google Scholar
[17]
Z. Jia. Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblem[J]. Linear Algebra Appl., 1997, 259: 1-23.
DOI: 10.1016/s0024-3795(96)00238-8
Google Scholar
[18]
Z. Jia. Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm. Linear Algebra Appl., 1999, 287: 191-214.
DOI: 10.1016/s0024-3795(98)10197-0
Google Scholar
[19]
Zhihong Feng, V. Ajjarapu, Bo Long. Indentification of voltage collapse throuth direct equilibrium tracing. IEEE Trans. on Power System, 2000, 15(1): 342-349.
DOI: 10.1109/59.852142
Google Scholar
[20]
Xiaoyu Wen, Venkataramana Ajjarapu. Application of a Novel Eigenvalue Trajectory Tracing Method to Identify Both Oscillatory Stability Margin and Damping Margin[J]. IEEE Trans. on Power Ssystem, 2006, 21(2): 817-824.
DOI: 10.1109/tpwrs.2006.873111
Google Scholar
[21]
Frequency Domain Analysis of Low Frequency Oscillations in Large Electric Power Systems. EPRI Tech. Rep. EL-726, Apr. (1978).
Google Scholar