Thermodynamic Analysis of Indirect Ethanol Synthesis from Syngas

Article Preview

Abstract:

The dependence of chemical equilibrium constant on the reaction temperature and pressure and the feed molar ratio were theoretically calculated for indirect ethanol synthesis from syngas through the coupling of CO with methyl nitrite (MN) to dimethyl oxalate (DMO) and the hydrogenation of DMO to ethanol. It shows that the coupling process and the hydrogenation of DMO to ethanol are highly favorable at all temperatures and pressures, especially at low temperature. The hydrogenation of DMO to ethylene glycol (EG) and the further reaction of ethanol with H2 to high alcohol are thermodynamically favorable at low temperatures, below 630 and 450 K, respectively. Additionally, high reaction pressure is facilitated to EG and high alcohol formation. Accordingly, moderate reaction temperature (up 538 K) and low reaction pressure (below 1 MPa) are beneficial to ethanol production.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

457-462

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. E. Farrell, R. J. Plevin, B. T. Turner, A. D. Jones, M. O'Hare, and D. M. Kammen, Ethanol can contribute to energy and environmental Goals, Science, vol. 311, Jan. 2006, pp.506-508, doi: 10. 1126/science. 1121416.

DOI: 10.1126/science.1121416

Google Scholar

[2] W. D. Hsieha, R. H. Chenb, T. L. Wub, and T. H. Lina, Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels, Atmospheric Environment, vol. 36, Jan. 2002, p.403–410, doi: 10. 1016/S1352-2310(01)00508-8.

DOI: 10.1016/s1352-2310(01)00508-8

Google Scholar

[3] T. Beer and T. Grant, Life-cycle analysis of emissions from fuel ethanol and blends in Australian heavy and light vehicles, Journal of Cleaner Production, vol. 15, 2007, pp.833-837, doi: 10. 1016/j. jclepro. 2006. 07. 003.

DOI: 10.1016/j.jclepro.2006.07.003

Google Scholar

[4] M. Balat and H. Balat, Recent trends in global production and utilization of bio-ethanol fuel, Applied Energy, vol. 86, Nov. 2009, p.2273–2282, doi: 10. 1016/j. apenergy. 2009. 03. 015.

DOI: 10.1016/j.apenergy.2009.03.015

Google Scholar

[5] B. Zhang, W. B. Fu, and J. S. Gong, Study of fuel consumption when introducing DME or ethanol into diesel engine, Fuel, vol. 85 Mar. -Apr. 2006, p.778–782, doi: 10. 1016/j. fuel. 2005. 08. 042.

DOI: 10.1016/j.fuel.2005.08.042

Google Scholar

[6] D.C. Rakopoulos, C.D. Rakopoulos, E.C. Kakaras, and E.G. Giakoumis, Effects of ethanol–diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine, Energy Conversion and Management, vol. 49, Nov. 2008, p.3155.

DOI: 10.1016/j.enconman.2008.05.023

Google Scholar

[7] H. Kima and B. Choia, Effect of ethanol–diesel blend fuels on emission and particle size distribution in a common-rail direct injection diesel with warm-up catalytic converter engine, Renewable Energy, vol. 33, Oct. 2008, p.2222.

DOI: 10.1016/j.renene.2008.01.002

Google Scholar

[8] S. Bringezu, H. Schütz, M. O'Brien, L. Kauppi, R. W. Howarth, and J. McNeely, Towards sustainable production and use of resources: assessing biofuels, United Nations Environment Programme, 2009, p.34.

Google Scholar

[9] 2010 Ethanol industry outlook: cimate of opportunity,. Renewable Fuels Association, 2010, pp.24-25.

Google Scholar

[10] J. R. R. Nielsen, Making fuels from biomass, Science, vol. 308, June. 2005, pp.1421-1422, doi: 10. 1126/science. 1113354.

Google Scholar

[11] K. A. Gray, L Zhao, and M. Emptage, Bioethanol, Curr. Opin. Chem. Biol., vol. 10, 2006, pp.141-146.

Google Scholar

[12] P. L Spath and D. C. Dayton, Preliminary screening - technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas, NREL/TP-510-34929, National Rewnewable Energy Laboratory: Golden Co., (2003).

DOI: 10.2172/1216404

Google Scholar

[13] V. Subramani and S. K. Gangwal, A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol, Energy Fuels, vol. 22, Jan. 2008, pp.814-839, doi: 10. 1021/ef700411x.

DOI: 10.1021/ef700411x

Google Scholar

[14] B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Liquids, 5th Ed., New York: McGraw-Hill Book Company, pp.63-95, (2004).

Google Scholar

[15] J. Shi, J. D. Wang, and G. C. Yu, Handbook of chemical engineering, Beijing: Chem. Ind. Press, (1996).

Google Scholar

[16] H. Z. Lu, Handbook of petrochemical basic data, Beijing: Chem. Ind. Press, p.700, (1982).

Google Scholar