[1]
Feng Ying-Jie, Yang Chang-Chun and Wu Ping, The review of the finite-difference elastic wave motion modeling, Progress in Geophysics, vol. 22, Apr. 2007, pp.487-491.
Google Scholar
[2]
Du Qizhen, Lin Bin and Hou Bo, Numerical modeling of seismic wavefields in transversely isotropic mediia with a compact staggered-grid finite difference scheme, Applied Geophysics, vol. 6, Mar. 2009, pp.42-49.
DOI: 10.1007/s11770-009-0008-z
Google Scholar
[3]
Alterman Z and Karal Jr F C, Propagation of elastic waves in layered media by finite difference methods, Bull. Seism. Soc. Am., vol. 58, 1968, pp.367-398.
Google Scholar
[4]
Madariaga R, Dynamics of an expanding circular fault, Bull Seism Soc. Am., vol. 65, 1976, pp.163-181.
Google Scholar
[5]
Dablain M A, The application of high-differencing to the scalar wave equation, Geophysics, vol. 51, 1986, pp.53-66.
DOI: 10.1190/1.1442040
Google Scholar
[6]
Levander A R, Four-order finite-difference P-SV seismograms, Geophysics, vol. 53, 1988, pp.1425-1436.
DOI: 10.1190/1.1442422
Google Scholar
[7]
Dong Liang-Guo, Ma Zai-Tian, Cao Jing-Zhong, Wang Hua-Zhong, Geng Jian-Hua, Lei Bing, Xu Shi-Yong et al., A staggered-grid high-order difference method of one-order elastic wave equation, China Journal of Geophysics, vol. 43, May 2000, pp.411-419.
DOI: 10.1002/cjg2.107
Google Scholar
[8]
Li M, Improvement to the staggered-grid high-order difference method of one-order elastic wave equation, Progress in Geophysics, vol. 24, June 2009, pp.1065-1068.
Google Scholar
[9]
Virieux J., P-SV Wave Propagation in Heterogeneous Media: Velocity-stress Finite Difference Method, Geophysics, vol. 51, 1986, pp.889-901.
DOI: 10.1190/1.1442147
Google Scholar
[10]
Virieux J., P-SV Wave Propagation in Heterogeneous Media: Velocity-stress Finite Difference Method,. Geophysics, vol. 51, 1986, pp.889-901.
DOI: 10.1190/1.1442147
Google Scholar
[11]
Dong Liang-Guo, Ma Zai-Tian and Cao Jing-Zhong, A study on stability of the staggered grid high-order difference method of first-order elastic wave equation, Chinese Journal of Geophysics, vol. 43, Nov. 2000, pp.856-864.
DOI: 10.1002/cjg2.107
Google Scholar
[12]
Wu Guo-Chen, Yang Hua-Zhong, Analysis of numerical dispersion in wave-field simulation, Progress in Geophysics, vol. 20, Mar. 2005, pp.58-65.
Google Scholar
[13]
Dong Qing-Hua, Numerical modeling for seismic origions, World Information on Earthquake Engineering, vol. 16, Sep. (2000).
Google Scholar
[14]
Cerjan C, Kosloff D, A none reflection boundary condition for discrete acoustic and elastic wave equation, Geophysics, vol. 50, 1985, pp.705-708.
DOI: 10.1190/1.1441945
Google Scholar
[15]
Saenger E. H. and Bohlen T., Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid, Geophysics, vol. 69, 2004, pp.583-591.
DOI: 10.1190/1.1707078
Google Scholar