[1]
Hahn G.T., Bhargava V., and Chen Q. The cyclic stress-strain properties, hysteresis loop shape, and kinematic hardening of two high-strength bearing steels, Metall. Trans. A, 21, 1990, pp.653-665.
DOI: 10.1007/bf02671936
Google Scholar
[2]
Voskamp A.P., and Mittemeijet E.J., The effect of changing microstructure on the fatigue behavior during cyclic rolling contact loading, Z. Metallkd, 88, 1997, pp.310-319.
Google Scholar
[3]
Voskamp A.P., Microstructural stability and bearing performance, Bearing steel technology, ASTM STP No. 1419, 2002, pp.443-456.
DOI: 10.1520/stp10872s
Google Scholar
[4]
Turteltaub S., and Suiker A.S. J, Transformation-induced plasticity in ferrous alloys, J. Mech. Phy. Solids, 53, 2005, pp.1747-1788.
DOI: 10.1016/j.jmps.2005.03.004
Google Scholar
[5]
Voskamp A.P., and Mittemeijet E.J., Crystallographic preferred orientation induced by cyclic rolling contact loading, Metall. Mater. Trans., A. 27, 1996, pp.3445-3465.
DOI: 10.1016/s0142-1123(97)82638-2
Google Scholar
[6]
Lou B., Han L. Z., Liu S., and Shen F., The rolling contact fatigue behaviors in carburized and hardened steel, Fatigue 90: proceedings of the fourth international conference on fatigue and fatigue threshold, Honolulu HI, 1990, pp.627-632.
Google Scholar
[7]
Lundberg G., and Palmgren A., Dynamic capacity of rolling bearings, Acta Polytech Scand., Mech. Eng. Scr., 1(3), 1947, pp.1-52.
Google Scholar
[8]
Chiu. Y.P., Tallian T.E., and McCool J.I., 'An engineering model of spalling fatigue failure in rolling contact- the subsurface model, Wear, 17, 1971, pp.433-446.
DOI: 10.1016/0043-1648(71)90049-4
Google Scholar
[9]
Ioannides E., Berling G., and Gabelli A An analytical formulation for the life of rolling bearings, Acta Polytech. , Mech. Eng. Scr., 137, 1999, pp.58-60.
Google Scholar
[10]
Harris T.A., and Barnsby R.M., Life ratings for ball and roller bearings, Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 215, 2001, pp.577-595.
DOI: 10.1243/1350650011543817
Google Scholar
[11]
ISO, (1989), Rolling bearings- Dynamic load ratings and rating life, Draft International Standard ISO/DIS 281, ISO, Geneva, Switzerland.
DOI: 10.3403/30190698
Google Scholar
[12]
Schlicht H., Schreiber R.M., and Zwirlein O., Fatigue and failure mechanism of bearings, I. Mech. Conf. Publ., 1, 1986, pp.85-90.
Google Scholar
[13]
Tallian T.E., Simplified contact fatigue life prediction model-Part I: Review of published models, ASME J. Tribol., 114, 1992 pp.207-213.
DOI: 10.1115/1.2920875
Google Scholar
[14]
Zaretsky E.V., Design for the life, plan for death, Mech. Des., 66(15), 1994, pp.55-59.
Google Scholar
[15]
Kudish I.I., and Burris K.W., Modern state of experimentation and modeling in contact fatigue phenomenon: part II- Analysis of the existing statistical mathematical models of bearing and gear fatigue life. New stastical model of contact fatigue, Tribol. Trans., 42(2), 2000, pp.297-301.
DOI: 10.1080/10402000008982343
Google Scholar
[16]
Leng X., Chen Q., and Shao E., Initiation and propagation of the case crushing cracks in rolling contact fatigue, Wear, 122, 2000, pp.33-43.
DOI: 10.1016/0043-1648(88)90004-x
Google Scholar
[17]
Shimizu S., Fatigue limit concept and life prediction model for rolling contact machine elements, Tribol. Trans., 45(3), 2002, pp.341-347.
DOI: 10.1080/10402000208982519
Google Scholar