[1]
L.S. Coelho, Novel Gaussian quantum-behaved particle swarm optimizer applied to electromagnetic design, IET Sci. Meas. Technol, pp.290-294, (2007).
DOI: 10.1049/iet-smt:20060124
Google Scholar
[2]
ZHANG Wenjing, ZHAO Xianzhang, TAI Xianqing, Parameter identification of gun servo friction model based on the particle swarm algorithm, J Tsinghua Univ(Sci&Tech), Vol. 47. No. S2, pp.1717-1720, (2007).
DOI: 10.1109/chicc.2006.4346908
Google Scholar
[3]
Jun Sun, Bin Feng, WenboXu, Particle Swarm Optimization with particles having quantum behavior , Congress on Evolutionary Computation, pp.325-331, (2004).
DOI: 10.1109/cec.2004.1330875
Google Scholar
[4]
KANG Yan, SUN Jun, XU Wen- bo, Parameter selection of quantum- behaved particle swarm optimization , Computer Engineering and Applications, 43(23), pp.40-42, (2007).
Google Scholar
[5]
BAI Wen - bao, XIONG Wei- li, Xu Bao- guo, Tuning of PID parameters based on QDPSO , Computer Engineering and Applications, 4(33), pp.61-63, (2007).
Google Scholar
[6]
WANG Zhang, FENG Bin, SUN Jun, Quantum-behaved particle swarm optimization with dimension mutation operator , Computer Engineering and Design, Vol. 29, No. 6, pp.1478-1481, (2008).
Google Scholar
[7]
Yan Wanga, _, Xiao-Yue Fenga, Yan-Xin Huang, et al, A novel quantum swarm evolutionary algorithm and its applications, Neurocomputing, 70, p.633–640, (2007).
Google Scholar
[8]
WU Jian-sheng, QIN Fa-jing, A Design ofParticle Swarm Optmiization with MATALB, Journal ofLiuzhou TeachersColleg, Vo. l 20 No. 4, pp.97-100, (2005).
Google Scholar
[9]
Zeng Xiang-guang Zhang Ling-ling, AParticle Swarm Optimization Approach for Optimum Design ofPID Controller, Machinery Design & Manufacture, vol4, pp.81-82, (2007).
Google Scholar