Research on Maneuvering Trajectories Optimization in Bearings-Only Localization for Single Observer

Article Preview

Abstract:

Based on Crammer-Rao Lower Bound (CRLB), this paper adopts Geometric Dilution of Precision (GDOP) as the optimizing performance index to analyze the localization precision in Bearing-only localization for single observer. And the genetic algorithm is employed to calculate the optimal course sequence. The movement straight with constant velocity and movement with constant prefix angles are analyzed. Simulations show that maneuvering trajectory is propitious to improve localization precision.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

5946-5950

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hammel S. E, Liu P.T. Optimal observer motion for localization with bearings measurements. Computers Maths. Applic, 1989, 18 (1): 171~180.

Google Scholar

[2] Helferty J. P, Mudgett D.R. Optimal observer trajectories for bearings-only tracking by minimizing the trace of the Cramer-Rao lower bound. 32th International Conference of Control and Decision. 1993: 936~938.

DOI: 10.1109/cdc.1993.325008

Google Scholar

[3] Helferty J. P, Mudgett D. R, Dzielski J.E. Trajectories optimization for minimum range error in bearings-only source localization. IEEE Proc of SP, 1993: 229~234.

DOI: 10.1109/oceans.1993.326097

Google Scholar

[4] Cadre J.P. Le, Gauvrit.H. Optimization of the observer motion for bearings-only target motion analysis. IEEE proc of Control Decision, 1996: 190~196.

DOI: 10.1109/cdc.1997.652322

Google Scholar

[5] Cadre J.P. Le. Optimization of the observer motion for bearings-only target motion analysis. IEEE proc of SP, 1997: 3126~3131.

DOI: 10.1109/cdc.1997.652322

Google Scholar

[6] Tremois O, Cadre L.J. Optimal observer trajectory in bearings-only tracking for maneuvering sources. IEE proc of radar. sonar. navig. , 1999. 146(1): 31~39.

DOI: 10.1049/ip-rsn:19990262

Google Scholar

[7] Yaakov. O, Pavel.D. Optimization of observer Trajectories for bearings-only Target Localization. IEEE Trans on AES, 1999, 35 (3): 892~902.

DOI: 10.1109/7.784059

Google Scholar

[8] Passerieux.J. M, Cappel D.V. Optimal observer maneuver for bearings-only Target Tracking. IEEE Trans on AES, 1998. 34(3): 777~788.

DOI: 10.1109/7.705885

Google Scholar

[9] Hong.Y. G, Donaid W.T. Cramer-Rao lower bounds on estimating the parameters of a filtered burst of sinusoid. IEEE Trans on AES. 1997. 33(2): 421~431.

DOI: 10.1109/7.575875

Google Scholar

[10] Shi Z. S. Research on Bearings-Only Target Motion and Maneuvering Trajectories Optimization for single station[D]. Naval University of Engineering, (2004).

Google Scholar

[11] Dong Z. R. Optimal observer trajectory in bearings-only localization and tracking. Fire control and Command control, (2000).

Google Scholar

[12] Li H. J. The maneuvering principles in bearings-only tracking for single submarine. Fire control and Command control, (2000).

Google Scholar

[13] Shi Zhangsong. A Single Platform Bearings-only Target Tracking Algorithm Using Instrumental Variables. IEEE 7th International conference on Signal proceeding, Beijing, 2004. 9.

DOI: 10.1109/icosp.2004.1442275

Google Scholar

[14] Shi Zhangsong. Applications of modified polar coordinates self adapting Kalman filter Algorithms in bearings-only tracking. Journal of Naval Univ. of Engineering, (2004).

Google Scholar