[1]
J. Gertler, W. Li, Y. Huang, T. J. McAvoy, Isolation enhanced principal component analysis, AIChE Journal, vol. 45, no. 2, 1999, pp.323-334.
DOI: 10.1002/aic.690450213
Google Scholar
[2]
S. J. Qin, W. Li, Detection, identification and reconstruction of faulty sensors with maximized sensitivity, AIChE Journal, vol. 45, no. 9, 1999, p.1963-(1976).
DOI: 10.1002/aic.690450913
Google Scholar
[3]
S. J. Qin, W. Li, Detection and identification of faulty sensors in dynamic processes, AIChE Journal, vol. 47(7) , 2001, pp.1581-1593.
DOI: 10.1002/aic.690470711
Google Scholar
[4]
L. H. Chiang, M. E. Kotanchek, A. K. Kordon, Fault diagnosis based on Fisher discriminant analysis and support vector machines, Computers & Chemical Engineering, vol. 28, 2008, pp.1389-1401.
DOI: 10.1016/j.compchemeng.2003.10.002
Google Scholar
[5]
O. Francesco, C. Claudio, C. Barbara, J. Luo, S. Giulio, On-line independent support vector machines, Pattern Recognition, vol. 43, 2010, pp.1401-1412.
Google Scholar
[6]
K. Manabu, S. Tannaka, S. Hasebe, I. Hashimoto, Monitoring independent components for fault detection, AIChE Journal, vol. 49, no. 4, 2003, pp.969-976.
DOI: 10.1002/aic.690490414
Google Scholar
[7]
J. Bins and B. Draper, Feature selection from huge feature sets, in Proc. Int. Conf. Comput. Vis., Vancouver, BC, Canada, Jul. 2001, p.159–165.
DOI: 10.1109/iccv.2001.937619
Google Scholar
[8]
M. A. Hall, Correlation-based feature selection for machine learning, Ph.D. dissertation, Dept. Comput. Sci., Univ. Waikato, Waikato, New Zealand, (1999).
Google Scholar
[9]
G. Lashkia and L. Anthony, Relevant, irredundant feature selection and noisy example elimination, IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 34, no. 2, Apr. 2004, p.888–897.
DOI: 10.1109/tsmcb.2003.817106
Google Scholar
[10]
L. Yu, H. Liu, Efficient feature selection via analysis of relevance and redundancy, , Jounal of Machine Learning Research, vol. 5, 2004, pp.1205-1224.
Google Scholar
[11]
J. Downs, E. Vogel, Plant-wide industrial process control problem, Computers and Chemical Engineering, vol. 17, no. 3, 1993, 245–255.
DOI: 10.1016/0098-1354(93)80018-i
Google Scholar
[12]
P.R. Lyman, C. Georgakis, Plant-wide control of the Tennessee Eastman problem, Computers and Chemical Engineering, vol. 19, 1995, p.321–331.
DOI: 10.1016/0098-1354(94)00057-u
Google Scholar
[13]
A. Kulkarni, V. Jayaraman, B. Kulkarni, Knowledge incorporated support vector machines to detect faults in tennessee eastman process, Computers and Chemical Engineering, vol. 29, no. 10, 2005, p.2128–2133.
DOI: 10.1016/j.compchemeng.2005.06.006
Google Scholar
[14]
S. Verron *, T. Tiplica, A. Kobi, Fault detection and identification with a new feature selection based on mutual information, Journal of Process Control, vol. 18, 2008, p.479–490.
DOI: 10.1016/j.jprocont.2007.08.003
Google Scholar
[15]
S. Canu, Y. Grandvalet, V. Guigue, A. Rakotomamonjy, SVM and Kernel Methods Matlab Toolbox , Perception Systèmes et Information, INSA de Rouen, Rouen, France,(2005).
Google Scholar