[1]
Union for the Coordination of Transmission of Electricity (UCTE), UCTE Operation Handbook, (2009).
Google Scholar
[2]
B. Fardanesh, Future trends in power system control, IEEE Computer Applications in Power, vol. 15, no. 3, pp.24-31, July (2002).
DOI: 10.1109/mcap.2002.1018819
Google Scholar
[3]
A.M. Azmy, Optimal Power Flow to Manage Voltage Profiles in Interconnected Networks Using Expert Systems, IEEE Trans. Power Systems, vol. 22, no. 4, pp.1622-1628, Nov. (2007).
DOI: 10.1109/tpwrs.2007.907961
Google Scholar
[4]
T. V. Cutsem, C. Vournas, Voltage Stability of Electric Power Systems, Springer, (1998).
Google Scholar
[5]
J. Shan, U.D. Annakkage and A.M. Gole , A platform for validation of FACTS models, IEEE Trans. on Power Delivery , vol. 21, no. 1, pp.484-491, Jan. (2006).
DOI: 10.1109/tpwrd.2005.852301
Google Scholar
[6]
Y. Phulpin, M. Begovic, M. Petit and et al., A fair method for centralized optimization of multi-TSO power systems, International Journal of Electrical Power & Energy Systems, vol. 31, issue 9, pp.482-488, Oct. (2009).
DOI: 10.1016/j.ijepes.2009.03.014
Google Scholar
[7]
H. Seyedi and M. Sanaye-Pasand, New centralised adaptive load-shedding algorithms to mitigate power system blackouts, in IEE Proc. Generation, Transmission & Distribution, vol. 3, no. 1, pp.99-114, Jan. (2009).
DOI: 10.1049/iet-gtd:20080210
Google Scholar
[8]
N. Nimpitiwan and C. Chaiyabut, Centralized Control of System Voltage/Reactive Power Using Genetic Algorithm, in Proc. International Conference on Intelligent Systems Applications to Power Systems, pp.1-6, 5-8 Nov. (2007).
DOI: 10.1109/isap.2007.4441598
Google Scholar
[9]
A.G. Beccuti, T.H. Demiray, G. Andersson and et al. A Lagrangian Decomposition Algorithm for Optimal Emergency Voltage Control, IEEE Trans. Power Syst., vol. 25, no. 4, pp.1769-1779, Nov. (2010).
DOI: 10.1109/tpwrs.2010.2043749
Google Scholar
[10]
B. Tyagi and S.C. Srivastava, A decentralized automatic generation control scheme for competitive electricity markets, IEEE Trans. Power Syst., vol. 21, no. 1, pp.312-320, Feb. (2006).
DOI: 10.1109/tpwrs.2005.860928
Google Scholar
[11]
K. Tanaka, M. Oshiro, S. Toma and et. al Decentralised control of voltage in distribution systems by distributed generators, in IEE Proc. Generation, Transmission & Distribution, vol. 4, no. 11, pp.1251-1260, Nov. (2010).
DOI: 10.1049/iet-gtd.2010.0003
Google Scholar
[12]
E. Camponogara, D. Jia, B.H. Krogh and et al., Distributed model predictive control, Control Systems Magazine, IEEE , vol. 22, no. 1, pp.44-52, Feb. (2002).
Google Scholar
[13]
A.N. Venkat, I.A. Hiskens, J.B. Rawlings and et al. Distributed MPC Strategies With Application to Power System Automatic Generation Control,, IEEE Trans. Control Systems Technology, vol. 16, no. 6, pp.1192-1206, Nov. (2008).
DOI: 10.1109/tcst.2008.919414
Google Scholar
[14]
S. Karkkainen and E. Lakervi, Liberalisation of electricity market in Finland as a part of Nordic market, in IEE Proc. Generation, Transmission and Distribution, vol. 148, no. 2, pp.194-199, Mar (2001).
DOI: 10.1049/ip-gtd:20010325
Google Scholar
[15]
Y. Phulpin, M. Begovic, M. Petit and et al. Evaluation of Network Equivalents for Voltage Optimization in Multi-Area Power Systems, IEEE Trans. Power Syst., vol. 24, no. 2, pp.729-743, May (2009).
DOI: 10.1109/tpwrs.2009.2016534
Google Scholar
[16]
M. Zima, M. Larsson, P. Korba and et al. Design Aspects for Wide-Area Monitoring and Control Systems, in Proc. of the IEEE , vol. 93, no. 5, pp.980-996, May (2005).
DOI: 10.1109/jproc.2005.846336
Google Scholar
[17]
J. De La Ree, V. Centeno, J.S. Thorp and et al. Synchronized Phasor Measurement Applications in Power Systems, IEEE Trans. Smart Grid, vol. 1, no. 1, pp.20-27, June (2010).
DOI: 10.1109/tsg.2010.2044815
Google Scholar
[18]
J. B. Ward, Equivalent Circuits for Power-Flow Studies, Trans. of the American Institute of Electrical Engineers, vol. 68, no. 1, pp.373-382, July (1949).
DOI: 10.1109/t-aiee.1949.5059947
Google Scholar
[19]
P. Dimo, Nodal Analysis of Power Systems, Abacus Press, Kent, England, (1975).
Google Scholar
[20]
A.M. Azmy, I. Erlich, Identification of dynamic equivalents for distribution power networks using recurrent ANNs, in Proc. Power Systems Conference and Exposition, vol. 1, pp.348-353, 10-13 Oct. (2004).
DOI: 10.1109/psce.2004.1397544
Google Scholar
[21]
T. Singhavilai, O. Anaya-Lara, K.L. Lo, Identification of the dynamic equivalent of a power system, in Proc. 44th International Universities Power Engineering Conference (UPEC), pp.1-5, 1-4 Sept. (2009).
Google Scholar
[22]
J.M. Undrill, A.E. Turner, Construction of Power System electromechanical Equivalents by Modal Analysis, IEEE Trans. Power Apparatus and Systems, vol. PAS-90, no. 5, pp.2049-2059, Sept. (1971).
DOI: 10.1109/tpas.1971.293000
Google Scholar
[23]
J. M. R. Arredondo, R. G. Valle, An optimal power system model order reduction technique, International Journal of Electrical Power & Energy Systems, vol. 26, issue 7, pp.493-500, Sep. (2004).
DOI: 10.1016/j.ijepes.2004.01.001
Google Scholar
[24]
R. Podmore, Identification of Coherent Generators for Dynamic Equivalents,, IEEE Trans. Power Apparatus and Systems, vol. PAS-97, no. 4, pp.1344-1354, July (1978).
DOI: 10.1109/tpas.1978.354620
Google Scholar
[25]
F. Wu, N. Narasimhamurthi, Coherency identification for power system dynamic equivalents, IEEE Trans. Circuits and Systems, vol. 30, no. 3, pp.140-147, Mar (1983).
DOI: 10.1109/tcs.1983.1085343
Google Scholar
[26]
J. Sung-Kwan, L. Chen-Ching, L.E. Jones and et al. Coherency and aggregation techniques incorporating rotor and voltage dynamics, IEEE Trans. Power Syst., vol. 19, no. 2, pp.1068-1075, May (2004).
DOI: 10.1109/tpwrs.2004.825825
Google Scholar
[27]
A.M. Stankovic, A.T. Saric, M. Milosevic, Identification of nonparametric dynamic power system equivalents with artificial neural networks, IEEE Trans. Power Syst., vol. 18, no. 4, pp.1478-1486, Nov. (2003).
DOI: 10.1109/tpwrs.2003.818704
Google Scholar