Modeling and Simulation of Linear Dynamic Characteristic for a Giant Magnetostrictive Actuator Using Bond Graph

Article Preview

Abstract:

The development of an new method for formulation of transduction or input and output representation for a giant magnetostrictive actuator (GMA) is presented. The transduction model is built through the application of a bond graph modeling approach which includes the mechanical dynamics and the electro-magneto-mechanical interaction of the actuator. Simulation and experiment behavior correlation are also presented. The bond graph model allows for in-depth investigation of dynamic behavior of GMA, such as energy conversion, output displacement or force and so on.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

7324-7332

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.G. Olabi, A. Grunwald, Design and application of magnetostrictive materials, Materials and Design 28, (2008):469–483.

DOI: 10.1016/j.matdes.2006.12.016

Google Scholar

[2] Flatau, A.B., Hall, D.L. & Schlesselman, J.M., "Magnetostrictive Active Vibration Control Systems", 30th Aerospace Sciences Meeting & Exhibit, Reno Nevada, January 6-9, (1992)

DOI: 10.2514/6.1992-490

Google Scholar

[3] Seok-Jun Moon, Chae-Wook Lim, et al. Structural vibration control using linear magnetostrictive actuators, Journal of Sound And Vibration 302,(2007):875-891

DOI: 10.1016/j.jsv.2006.12.023

Google Scholar

[4] M.T. Azar, Micro Actuators, Publisher Kluwer Academic Publishers, USA, (1998)

Google Scholar

[5] H. Kwun, K.A. Bartels, Magnetostrictive sensor technology and its application, Ultrasonics 36 (1998): 171–178

DOI: 10.1016/s0041-624x(97)00043-7

Google Scholar

[6] J.M. Vranish, Magnetostrictive direct drive rotary motor development, IEEE Trans. MAG 27 (6) (1991):5355–5357

DOI: 10.1109/20.278837

Google Scholar

[7] W.J. Kim, J.H. Goldie, M.J. Gerver, et al., Extended-range linear magnetostrictive motor with double-sided three-phase stators, IEEE Trans. Ind. Appl, 38 (3) (2002):651–659

DOI: 10.1109/tia.2002.1003414

Google Scholar

[8] T. Fukuda, H. Hosokai, H. Ohyama, et al., Giant magnetostrictive alloy applications to micro mobile robot as a micro actuator without power supply cables, in: Proceedings of the MEMS '91 on An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, IEEE, January 30–February 2, 1991, p.210–215

DOI: 10.1109/memsys.1991.114798

Google Scholar

[9] Natale C, Velardi F, Visone C. Identification and Compensation of Preisach Hysteresis Models for Magnetostrictive Actuators. Physica B 306, pp.161-165, (2001)

DOI: 10.1016/s0921-4526(01)00997-8

Google Scholar

[10] Cavallo A, Natale C, Pirozzi S, Visone, C. Effects of Hysteresis Compensation in Feedback Control Systems. IEEE Trans. Magn., vol 39, no.3, pp.1389-1392, (2003)

DOI: 10.1109/tmag.2003.810912

Google Scholar

[11] Cavallo A, Natale C, Pirozzi S , Visone C , Formisano A. Feedback Control Systemsfor Micropositioning Tasks with Hysteresis Compensation. IEEE Trans. Magn., vol.40,no.2 , pp.876-879, (2004)

DOI: 10.1109/tmag.2004.824777

Google Scholar

[12] Tan X, Baras J S. Modeling and Control of Hysteresis in Magnetostrictive Actuators. Automatica, vol.40, no.9 , pp.1469-1480, (2004)

DOI: 10.1016/j.automatica.2004.04.006

Google Scholar

[13] Zhitong Cao, Jiongjiong Cai. Design of a giant magnetostrictive motor driven by elliptical motion, Sensors and Actuators A 118 (2005):332–337

DOI: 10.1016/j.sna.2004.08.026

Google Scholar

[14] Yan Rongge, Wang Bowen, Cao Shuying, et al. Magneto-mechanical strong coupled model for a giant magnetostrictive actuator, proceedings of CSEE,2003,23(7): 107-111

Google Scholar

[15] P. Gawthrop, L. Smith, Metamodelling: Bond Graphs and Dynamic Systems, Prentice Hall International (UK) Limited, Hemel Hempstead, (1996)

Google Scholar

[16] G. Dauphin-Tanguy, Les Bond Graphs, Hermes Science Europe Ltd., Paris, France, (2000)

Google Scholar

[17] W. Borutzky, Bond graphs – A Methodology for Modelling Multidisciplinary Dynamic Systems, Volume FS-14 of Frontiers in Simulation, SCS Publishing House, Erlangen, San Diego, (2004)

Google Scholar

[18] A. Grunwald, A.G. Olabi, Design of a magnetostrictive (MS) actuator, Sensors and Actuators 144 (2008) 161–175

DOI: 10.1016/j.sna.2007.12.034

Google Scholar

[19] M.T. Azar, Micro Actuators, Publisher Kluwer Academic Publishers, USA, (1998)

Google Scholar

[20] J.L. Pons, Emerging Actuator Technologies, Wiley, 2005, p.178–185

Google Scholar

[21] Anthony E Ackerman, chen liang, craig A rogers. Dynamic transduction characterization of magnetostrictive actuators, smart mate. Struct. 5(1996):115-120

DOI: 10.1088/0964-1726/5/2/001

Google Scholar

[22] Sun Ying, Wang Bowen, et al. Dynamic Linearity Model and Experiment for a Giant Magnetstricitve Actuator, Proceedings of the CSEE, 2007,27(8): 96-101

Google Scholar

[23] Hunt, Frederick V., Electroacoustics: The Analysis of Transduction, and Its Historical Background, Acoustical Society of America, 1982, pp.92-102, 216-221

Google Scholar