[1]
F. L. Lewis and V. L. Syrmos, Optimal Control, 2nd Edition, John Wiley & Sons, Inc., (1995).
Google Scholar
[2]
G. P. Liu and R. J. Patton, Eigenstructure Assignment for Control System Design, John Wiley & Sons, Inc., (1998).
Google Scholar
[3]
J. W. Choi and Y. B. Seo, Control design methodology using EALQR, in Proceedings of the IEEE 37th SICE Annual Conference, (1998).
DOI: 10.1109/sice.1998.742961
Google Scholar
[4]
J. V. da Fonseca Neto and C. P. Bottura, Parallel Genetic Algorithm Fitness Function Team for Eigenstructure Assignmentvia LQR Designs, in Proceedings of IEEE Congress on Evolutionary Computation, (1999).
DOI: 10.1109/cec.1999.782537
Google Scholar
[5]
C. P. Bottura and J. V. da Fonseca Neto, Parallel Eigenstructure Assignment via LQR Design and Genetic Algorithms, in Proceedings of the American Control Conference, San Diego, California, (1999).
DOI: 10.1109/acc.2000.878944
Google Scholar
[6]
J. V. da Fonseca Neto, et al., Modelos e Convergência de um AlgoritmoGenéticoparaAlocação de Auto-estrutura via RLQ, in IEEE Latin America Transactions, vol. 6, no. 1, pp.1-9, March (2008).
Google Scholar
[7]
R. Davis and T. Clarke, A parallel implementation of the genetic algorithm applied to the flight control problem, in IEE Colloquium on High Performance Computing for Advanced Control, p.6/1 - 6/3, (1994).
Google Scholar
[8]
C. Wongsathan and C. Sirima, Application of GA to Design LQR Controller for an Inverted Pendulum System, in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (2009).
DOI: 10.1109/robio.2009.4913127
Google Scholar
[9]
A. H. Zaeri, M. BayatiPoodeh, and S. Eshtehardiha, Improvement of Cûk Converter Performance with Optimum LQR Controller Based on Genetic Algorithm, in Proceedings of International Conference on Intelligent and Advanced Systems, (2007).
DOI: 10.1109/icias.2007.4658520
Google Scholar
[10]
M. BayatiPoodeh, et al., Optimizing LQR and Pole placement to Control Buck Converter by Genetic Algorithm, in Proceedings of International Conference on Control, Automation and Systems, (2007).
DOI: 10.1109/iccas.2007.4406697
Google Scholar
[11]
Y. J. Lee and K, H. Cho, Determination of the Weighting Parameters of the LQR System for Nuclear Reactor Power Control using the Stochastic Searching Methods, in Journal of the Korean Nuclear Society, vol. 29, no. 1, pp.68-77, Feb (1997).
Google Scholar
[12]
D. Ali, L. Hend, and M. Hassani, Optimized Eigenstructure Assignment by Ant System and LQR Approaches, in International Journal of Computer Science and Applications, vol. 5, no. 4, pp.45-56, (2008).
Google Scholar
[13]
R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd Edition, John Wiley & Sons, Inc., (2004).
Google Scholar
[14]
J. Kennedy and R. Eberhart, Particle Swarm Optimization, in Proceedings of IEEE International Conference on Neural Networks, (1995).
Google Scholar
[15]
R. Poli, J. Kennedy, and T. Blackwell, Particle Swarm Optimization: An Overview, in Swarm Intelligence, no. 1, pp.33-57, (2007).
DOI: 10.1007/s11721-007-0002-0
Google Scholar
[16]
V. Sukontanakarn, and M. Parnichkun, Real-Time Optimal Control for Rotary Inverted Pendulum, in American Journal of Applied Sciences, vol. 6, no. 6, 2009. Figure 2. GA: Cost functional , Stability Index, Settling time Index and Maximum control effort Figure 3. GA: Outputs , and the control signal Figure 4. PSO: Cost functional , Stability Index, Settling time Index and Maximum control effort Figure 5. PSO: Outputs , and the control signal.
DOI: 10.3844/ajassp.2009.1106.1115
Google Scholar