[1]
F. Ikeda, A numerical algorithm of discrete fractional calculus by using non-uniformly sampling data, Trans. of the SICE, Vol. 42, No. 8, pp.941-948, 2009. (in Japanese).
Google Scholar
[2]
F. Ikeda and S. Toyama, A design of discrete fractional-order PID controllers by using inhomogeneous sampling algorithm, Proceedings of the 8th International Conference on Motion and Vibration Control, WB1-6, (2006).
Google Scholar
[3]
F. Ikeda, A numerical algorithm of discrete fractional calculus by using inhomogeneous sampling data, Trans. of the SICE, E-6, pp.1-8, (2009).
Google Scholar
[2]
F. Ikeda and S. Toyama, Fractional derivative control designs by inhomogeneous sampling for systems with nonlinear elements, SICE Annual Conference 2010, 2A05-4, (2007).
DOI: 10.1109/sice.2007.4421171
Google Scholar
[3]
A. Oustaloup, La Commande CRONE: Commande Robuste d'Ordre Non Entier, Hermes, Paris, (1991).
Google Scholar
[4]
A. Oustaloup and P. Melchior, The great principles of the CRONE control", International Conference on Systems Engineering in the Service of Humans, Systems, Man and Cybernetics, Vol. 2, pp.118-129, 1993.R. Barbosa, J. A. Tenreiro Machado and I. M. Ferreira, "Tuning of PID controllers based on Bode's ideal transfer function, Nonlinear Dynamics, Vol. 38, pp.305-321, (2004).
DOI: 10.1007/s11071-004-3763-7
Google Scholar
[5]
I. Podlubny, Fractional order systems and µD PI –controllers, IEEE Trans. on Automatic Control, Vol. 44, No. 1, pp.208-214, (1999).
DOI: 10.1109/9.739144
Google Scholar
[6]
B. Vinagre, I. Podlubny, L. Dorcak and V. Feliu, On fractional PID controllers: A frequency domain approach, IFAC workshop on digital control. Past, present and future of PID control, Terrasa, Spain, pp.53-58, (2000).
DOI: 10.1016/s1474-6670(17)38220-4
Google Scholar