[1]
N. Ahmed, A.V. Mitrofanov, V I. Babitsky, V.V. Silberschmidt, Analysis of forces in ultrasonically assisted turning, Journal of Sound and Vibration Vol. 308 (2007), p.845.
DOI: 10.1016/j.jsv.2007.04.003
Google Scholar
[2]
S. Amini, H. Soleimanimehr, M.J. Nategh, A. Abudollah, M.H. Sadeghi, FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool, Journal of Materials Processing Technology Vol. 201 (2008), p.43.
DOI: 10.1016/j.jmatprotec.2007.11.271
Google Scholar
[3]
Chunxiang Ma, E. Shamoto, T. Moriwaki, Lijiang Wang, Study of machining accuracy in ultrasonic elliptical vibration cutting, International Journal of Machine Tools & Manufacture Vol. 44 (2004), p.1305.
DOI: 10.1016/j.ijmachtools.2004.04.014
Google Scholar
[4]
Chunxiang Ma, E. Shamoto, T. Moriwaki, Yonghong Zhang, Lijiang Wang, Suppression of burrs in turning with ultrasonic elliptical vibration cutting, International Journal of Machine Tools & Manufacture Vol. 45 (2005), p.1295.
DOI: 10.1016/j.ijmachtools.2005.01.011
Google Scholar
[5]
C. Nath, M. Rahman, K S. Neo, A study on ultrasonic elliptical vibration cutting of tungsten carbide, Journal of Materials Processing Technology Vol. 209 (2009), p.4459.
DOI: 10.1016/j.jmatprotec.2008.10.047
Google Scholar
[6]
Chandra Nath, Mustafizur Rahman, Ken Soon Neo, Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting, International Journal of Machine Tools & Manufacture Vol. 49 (2009), p.1089.
DOI: 10.1016/j.ijmachtools.2009.07.006
Google Scholar
[7]
M. Xiao, S. Karube, T. Soutome, K. Sato, Analysis of chatter suppression in vibration cutting, International Journal of Machine Tools & Manufacture Vol. 42 (2002), p.1677.
DOI: 10.1016/s0890-6955(02)00077-9
Google Scholar
[8]
M. Xiao, Q.M. Wang, K. Sato, S. Karube, T. Soutome, H. Xu, The effect of tool geometry on regenerative instability in ultrasonic vibration cutting, International Journal of Machine Tools & Manufacture Vol. 46 (2006), p.492.
DOI: 10.1016/j.ijmachtools.2005.07.002
Google Scholar
[9]
Chandra Nath, M. Rahman, S.S.K. Andrew, A study on ultrasonic vibration cutting of low alloy steel, Journal of Materials Processing Technology Vol. 192–193 (2007), p.159.
DOI: 10.1016/j.jmatprotec.2007.04.047
Google Scholar
[10]
Chandra Nath, M. Rahman, Effect of machining parameters in ultrasonic vibration cutting, International Journal of Machine Tools & Manufacture Vol. 48 (2008), p.965–974.
DOI: 10.1016/j.ijmachtools.2008.01.013
Google Scholar
[11]
J. Rimkevičienė, V. Ostaševičius, V. Jūrėnas, R. Gaidys, Experiments and simulations of ultrasonically assisted turning tool, Mechanika Vol. 75 (2009), p.42.
Google Scholar
[12]
Jeong-Du Kim, In-Hyu Choi, Characteristics of chip generation by ultrasonic vibration cutting with extremely low cutting velocity, International Journal of Advance Manufacturing Technology Vol. 14 (1998), p.2.
DOI: 10.1007/bf01179410
Google Scholar
[13]
N. Ahmed, A. V. Mitrofanov, V. I. Babitsky, V V. Silberschmidt, Analysis of material response to ultrasonic vibration loading in turning Inconel 718, Materials Science and Engineering: A Vol. 424 (2006), p.318.
DOI: 10.1016/j.msea.2006.03.025
Google Scholar
[14]
Jerald L. Overcash, James F. Cuttino, In-process modeling of dynamic tool-tip temperatures of a tunable vibration turning device operating at ultrasonic frequencies, Precision Engineering Vol. 33 (2009), p.505.
DOI: 10.1016/j.precisioneng.2009.02.001
Google Scholar
[15]
Kei Harada, Hiroyuki Sasahara, Effect of dynamic response and displacement/stress amplitude on ultrasonic vibration cutting, Journal of Materials Processing Technology Vol. 209 (2009), p.4490.
DOI: 10.1016/j.jmatprotec.2008.10.026
Google Scholar
[16]
A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Finite element simulations of ultrasonically assisted turning, Computational Materials Science Vol. 28 (2003), p.645.
DOI: 10.1016/j.commatsci.2003.08.020
Google Scholar
[17]
A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Finite element analysis of ultrasonically assisted turning of Inconel 718, Journal of Materials Processing Technology Vol. 153–154 (2004), p.233.
DOI: 10.1016/j.jmatprotec.2004.04.299
Google Scholar
[18]
V.I. Babitsky, A.V. Mitrofanov, V.V. Silberschmidt, Ultrasonically assisted turning of aviation materials: simulations and experimental study, Ultrasonics Vol. 42 (2004), p.81.
DOI: 10.1016/j.ultras.2004.02.001
Google Scholar
[19]
A.V. Mitrofanov, N. Ahmed, V.I. Babitsky, V.V. Silberschmidt, Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718, Journal of Materials Processing Technology Vol. 162–163 (2005), p.649.
DOI: 10.1016/j.jmatprotec.2005.02.170
Google Scholar
[20]
A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Thermomechanical finite element simulations of ultrasonically assisted turning, Computational Materials Science Vol. 32 (2005), p.463.
DOI: 10.1016/j.commatsci.2004.09.019
Google Scholar
[21]
N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, 3D finite element analysis of ultrasonically assisted turning, Computational Materials Science Vol. 39 (2007), p.149.
DOI: 10.1016/j.commatsci.2005.12.045
Google Scholar
[22]
Hiroyuki Sasahara, The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0. 45%C steel, International Journal of Machine Tools & Manufacture Vol. 45 (2005), p.131.
DOI: 10.1016/j.ijmachtools.2004.08.002
Google Scholar
[23]
M.J. Nategh, S. Amini, H. Soleimanimehr, Modeling the Force, surface roughness and cutting temperature in ultrasonic vibration-assisted turning of Al 7075, Advanced Materials Research Vol. 83-86 (2010), p.315.
DOI: 10.4028/www.scientific.net/amr.83-86.315
Google Scholar
[24]
H. Soleimanimehr, M.J. Nategh and S. Amini, Prediction of machining force and surface roughness in ultrasonic vibration-assisted turning using neural networks, Advanced Materials Research Vol. 83-86 (2010), p.326.
DOI: 10.4028/www.scientific.net/amr.83-86.326
Google Scholar
[25]
H. Soleimanimehr, M.J. Nategh , S. Amini, Modeling of Surface Roughness in Vibration Cutting by Artificial Neural Network, International Journal of Aerospace and Mechanical Engineering Vol. 4: 3 (2010), p.155.
Google Scholar