An Investigation of Lateral Surface Hardness and Related Cutting Forces in One-Directional Ultrasonic-Vibration Assisted Turning

Article Preview

Abstract:

The experimental investigation of UAT shows that the movement of cutting tool edge relative to the workpiece results from the cutting speed, feed speed and tools vibration in tangential direction affects the lateral machined surface of workpiece and leaves a repeating pattern of toothed regions on it. In UAT process, because of constant feed rate of tool toward workpiece, the cutting tool never separates from workpiece, though the tool rake face may separate periodically from chip in every cycle of vibration. This results in an increase in the surface hardness of the lateral machined surface in comparison with conventional turning (CT). The results of the present study confirm the advantage of UAT as far as the lower cutting force is concerned compared with CT. The higher surface hardness of the lateral surface observed in UAT causes the maximum cutting force to increase but the average force decreases with respect to CT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1041-1046

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ‏ N. Ahmed, A.V. Mitrofanov, V‏ I. Babitsky, V.V. Silberschmidt, Analysis of forces in ultrasonically assisted turning, Journal of Sound and Vibration Vol. 308 (2007), p.845.

DOI: 10.1016/j.jsv.2007.04.003

Google Scholar

[2] S. Amini, H. Soleimanimehr, M.J. Nategh, A. Abudollah, M.H. Sadeghi, FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool, Journal of Materials Processing Technology Vol. 201 (2008), p.43.

DOI: 10.1016/j.jmatprotec.2007.11.271

Google Scholar

[3] ‏ Chunxiang Ma, E. Shamoto, T. Moriwaki, Lijiang Wang, Study of machining accuracy in ultrasonic elliptical vibration cutting, International Journal of Machine Tools & Manufacture Vol. 44 (2004), p.1305.

DOI: 10.1016/j.ijmachtools.2004.04.014

Google Scholar

[4] Chunxiang Ma, E. Shamoto, T. Moriwaki, Yonghong Zhang, Lijiang Wang, Suppression of burrs in turning with ultrasonic elliptical vibration cutting, International Journal of Machine Tools & Manufacture Vol. 45 (2005), p.1295.

DOI: 10.1016/j.ijmachtools.2005.01.011

Google Scholar

[5] C. Nath, M. Rahman, K‏ S. Neo, A study on ultrasonic elliptical vibration cutting of tungsten carbide, Journal of Materials Processing Technology Vol. 209 (2009), p.4459.

DOI: 10.1016/j.jmatprotec.2008.10.047

Google Scholar

[6] Chandra Nath, Mustafizur Rahman, Ken Soon Neo, Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting, International Journal of Machine Tools & Manufacture Vol. 49 (2009), p.1089.

DOI: 10.1016/j.ijmachtools.2009.07.006

Google Scholar

[7] M. Xiao, S. Karube, T. Soutome, K. Sato, Analysis of chatter suppression in vibration cutting, International Journal of Machine Tools & Manufacture Vol. 42 (2002), p.1677.

DOI: 10.1016/s0890-6955(02)00077-9

Google Scholar

[8] M. Xiao, Q.M. Wang, K. Sato, S. Karube, T. Soutome, H. Xu, The effect of tool geometry on regenerative instability in ultrasonic vibration cutting, International Journal of Machine Tools & Manufacture Vol. 46 (2006), p.492.

DOI: 10.1016/j.ijmachtools.2005.07.002

Google Scholar

[9] Chandra Nath, M. Rahman, S.S.K. Andrew, A study on ultrasonic vibration cutting of low alloy steel, Journal of Materials Processing Technology Vol. 192–193 (2007), p.159.

DOI: 10.1016/j.jmatprotec.2007.04.047

Google Scholar

[10] Chandra Nath, M. Rahman, Effect of machining parameters in ultrasonic vibration cutting, International Journal of Machine Tools & Manufacture Vol. 48 (2008), p.965–974.

DOI: 10.1016/j.ijmachtools.2008.01.013

Google Scholar

[11] J. Rimkevičienė, V. Ostaševičius, V. Jūrėnas, R. Gaidys, Experiments and simulations of ultrasonically assisted turning tool, Mechanika Vol. 75 (2009), p.42.

Google Scholar

[12] ‏ Jeong-Du Kim, In-Hyu Choi, Characteristics of chip generation by ultrasonic vibration cutting with extremely low cutting velocity, International Journal of Advance Manufacturing Technology Vol. 14 (1998), p.2.

DOI: 10.1007/bf01179410

Google Scholar

[13] N. Ahmed, A. ‏ V. Mitrofanov, V. ‏ I. Babitsky, V‏ V. Silberschmidt, Analysis of material response to ultrasonic vibration loading in turning Inconel 718, Materials Science and Engineering: A Vol. 424 (2006), p.318.

DOI: 10.1016/j.msea.2006.03.025

Google Scholar

[14] Jerald L. Overcash, James F. Cuttino, In-process modeling of dynamic tool-tip temperatures of a tunable vibration turning device operating at ultrasonic frequencies, Precision Engineering Vol. 33 (2009), p.505.

DOI: 10.1016/j.precisioneng.2009.02.001

Google Scholar

[15] Kei Harada, Hiroyuki Sasahara, Effect of dynamic response and displacement/stress amplitude on ultrasonic vibration cutting, Journal of Materials Processing Technology Vol. 209 (2009), p.4490.

DOI: 10.1016/j.jmatprotec.2008.10.026

Google Scholar

[16] A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Finite element simulations of ultrasonically assisted turning, Computational Materials Science Vol. 28 (2003), p.645.

DOI: 10.1016/j.commatsci.2003.08.020

Google Scholar

[17] A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Finite element analysis of ultrasonically assisted turning of Inconel 718, Journal of Materials Processing Technology Vol. 153–154 (2004), p.233.

DOI: 10.1016/j.jmatprotec.2004.04.299

Google Scholar

[18] V.I. Babitsky, A.V. Mitrofanov, V.V. Silberschmidt, Ultrasonically assisted turning of aviation materials: simulations and experimental study, Ultrasonics Vol. 42 (2004), p.81.

DOI: 10.1016/j.ultras.2004.02.001

Google Scholar

[19] A.V. Mitrofanov, N. Ahmed, V.I. Babitsky, V.V. Silberschmidt, Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718, Journal of Materials Processing Technology Vol. 162–163 (2005), p.649.

DOI: 10.1016/j.jmatprotec.2005.02.170

Google Scholar

[20] A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Thermomechanical finite element simulations of ultrasonically assisted turning, Computational Materials Science Vol. 32 (2005), p.463.

DOI: 10.1016/j.commatsci.2004.09.019

Google Scholar

[21] ‏ N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, 3D finite element analysis of ultrasonically assisted turning, Computational Materials Science Vol. 39 (2007), p.149.

DOI: 10.1016/j.commatsci.2005.12.045

Google Scholar

[22] Hiroyuki Sasahara, The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0. 45%C steel, International Journal of Machine Tools & Manufacture Vol. 45 (2005), p.131.

DOI: 10.1016/j.ijmachtools.2004.08.002

Google Scholar

[23] M.J. Nategh, S. Amini, H. Soleimanimehr, Modeling the Force, surface roughness and cutting temperature in ultrasonic vibration-assisted turning of Al 7075, Advanced Materials Research Vol. 83-86 (2010), p.315.

DOI: 10.4028/www.scientific.net/amr.83-86.315

Google Scholar

[24] H. Soleimanimehr, M.J. Nategh and S. Amini, Prediction of machining force and surface roughness in ultrasonic vibration-assisted turning using neural networks, Advanced Materials Research Vol. 83-86 (2010), p.326.

DOI: 10.4028/www.scientific.net/amr.83-86.326

Google Scholar

[25] H. Soleimanimehr, M.J. Nategh , S. Amini, Modeling of Surface Roughness in Vibration Cutting by Artificial Neural Network, International Journal of Aerospace and Mechanical Engineering Vol. 4: 3 (2010), p.155.

Google Scholar