[1]
E. De Momi, et al., Automatic extraction of the mid-facial plane for cranio-maxillofacial surgery planning, International Journal of Oral and Maxillofacial Surgery, vol. 35, pp.636-642, (2006).
DOI: 10.1016/j.ijom.2006.01.028
Google Scholar
[2]
L. Yanxi, et al., Robust midsagittal plane extraction from normal and pathological 3-D neuroradiology images, IEEE Transactions on Medical Imaging, vol. 20, pp.175-192, (2001).
DOI: 10.1109/42.918469
Google Scholar
[3]
L. Junck, et al., Correlation Methods for the Centering, Rotation, and Alignment of Functional Brain Images, J Nucl Med, vol. 31, pp.1220-1226, July 1 (1990).
Google Scholar
[4]
A. V. Tuzikov, et al., Evaluation of the symmetry plane in 3D MR brain images, Pattern Recognition Letters, vol. 24, pp.2219-2233, (2003).
DOI: 10.1016/s0167-8655(03)00049-7
Google Scholar
[5]
J. P. Thirion, et al., Statistical analysis of normal and abnormal dissymmetry in volumetric medical images, Medical Image Analysis, vol. 4, pp.111-121, (2000).
DOI: 10.1016/s1361-8415(00)00012-8
Google Scholar
[6]
J. P. Thirion, et al., Statistical analysis of normal and abnormal dissymmetry in volumetric medical images, presented at the Proceedings of the IEEE Workshop on Biomedical Image Analysis, Santa Barbara, CA, (1998).
DOI: 10.1109/bia.1998.692397
Google Scholar
[7]
B. A. Ardekani, et al., Automatic detection of the mid-sagittal plane in 3-D brain images, IEEE Transactions on Medical Imaging, vol. 16, pp.947-952, (1997).
DOI: 10.1109/42.650892
Google Scholar
[8]
I. Volkau, et al., Extraction of the midsagittal plane from morphological neuroimages using the Kullback-Leibler's measure, Medical Image Analysis, vol. 10, pp.863-874, (2006).
DOI: 10.1016/j.media.2006.07.005
Google Scholar
[9]
W. L. Nowinski, et al., Rapid and Automatic Calculation of the Midsagittal Plane in Magnetic Resonance Diffusion and Perfusion Images, Academic Radiology, vol. 13, pp.652-663, (2006).
DOI: 10.1016/j.acra.2006.01.051
Google Scholar
[10]
S. Changming and J. Sherrah, 3D symmetry detection using the extended Gaussian image, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp.164-168, (1997).
DOI: 10.1109/34.574800
Google Scholar
[11]
P. Minovic, et al., Symmetry Identification of a 3-D Object Represented by Octree, IEEE Transactions on Pattern Anal. Mach. Intell., vol. 15, pp.507-514, (1993).
DOI: 10.1109/34.211472
Google Scholar
[12]
H. Weyl, Symmetry. Princeton, New Jersey: Princeton University Press, (1983).
Google Scholar
[13]
M. M. Ash and S. Ramfjord, Occlusion, 4th ed. Philadelphia: W.B. Saunders, (1995).
Google Scholar
[14]
D. Finkel and C. Kelley, Additive Scaling and the DIRECT Algorithm, Journal of Global Optimization, vol. 36, pp.597-608, (2006).
DOI: 10.1007/s10898-006-9029-9
Google Scholar
[15]
D. R. Jones, et al., Lipschitzian optimization without the Lipschitz constant, Journal of Optimization Theory and Applications, vol. 79, pp.157-181, (1993).
DOI: 10.1007/bf00941892
Google Scholar
[16]
R. C. Hibbeler, Geometric Properties An Area, in Mechanics of Materials, 4th ed Upper Saddle River, New Jersey, USA: Prentice Hall, 2000, pp.775-791.
Google Scholar
[17]
R. C. Hibbeler, Moments And Products of Inertia, in Dynamics, 9th ed Upper Saddle River, New Jersey, USA: Prentice Hall, 2001, pp.545-549.
Google Scholar