[1]
R. E. Mayle, The role of laminar-tubulent transition in gas turbine engines, Journal of Turbomachinery, 1991, vol. 113, pp.509-537.
DOI: 10.1115/1.2929111
Google Scholar
[2]
A. M. Savill, Some recent progress in the turbulence modeling of bypass transition. Near-Wall Turbulent Flows, Elsevier Science Publishers B. V, 1993, pp.829-848.
Google Scholar
[3]
S. K. Roberts, M. I. Yaras MI, Modeling of boundary-layer transition, Proceeding of ASME Turbo Expo, GT2004-53664.
Google Scholar
[4]
H. W. Emmons, The laminar-turbulent transition in a boundary layer - partⅠ, Journal of Aerospace Science, 1951, vol. 018(7), pp.490-498.
Google Scholar
[5]
R. Narasimha, On the distribution of intermittency in the transition region of a boundary layer, Journal of Aerospace Science, 1957, vol. 024(9), pp.711-712.
Google Scholar
[6]
K. K. Chen, N. A. Thyson, Extension of emmons' spot theory to flows on blunt bodies, AIAA Journal, 1971, vol. 09(5), pp.821-825.
DOI: 10.2514/3.6281
Google Scholar
[7]
W. J. Solomon, G. J. Walker, J. P. Gostelow, Transition length prediction for flows with rapidly changing pressure gradients, Journal of Turbomachinery, 1996, vol. 118(4), pp.744-751.
DOI: 10.1115/1.2840930
Google Scholar
[8]
J. Steelant, E. Dick, Modeling of bypass transition with conditioned navier-stokes equation coupled to an intermittency transport equation, Int. J. Num. Meth. Fluids, 1996, vol. 23, pp.193-220.
DOI: 10.1002/(sici)1097-0363(19960815)23:3<193::aid-fld415>3.0.co;2-2
Google Scholar
[9]
B. J. Abu-Gharmam, R. Shaw, Natural trnasitioin of boundary layers: the effects of turbulence, pressure gradient, and flow history., Journal of Mechanical Engineering Science, 1980, vol. 22(5), pp.213-228.
DOI: 10.1243/jmes_jour_1980_022_043_02
Google Scholar
[10]
D. Bohn, T. Heuer, Conjugate flow and heat transfer calculations of a high-pressure turbine nozzle guide vane, AIAA conference, AIAA-2001-3304.
DOI: 10.2514/6.2001-3304
Google Scholar
[11]
T. Chmielniak, W. Weoblewski, G. Nowak, et al., Coupled analysis of cooled gas turbine blades, Proceeding of ASME Turbo Expo, GT2003-38657.
DOI: 10.1115/gt2003-38657
Google Scholar
[12]
L. D. Hylton, M. S. Milhec, E. R. Turner, et al., Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes, NASA-CR-168015, (1983).
Google Scholar
[13]
S. T. Wang, Numerical method of 3d viscous flow field in turbomachinery and study of vortex structure in bowed blade cascades, Ph.D. thesis, Harbin Institute of Technology, Harbin, (1999).
Google Scholar
[14]
T. H. Pulliam, D. S. Chaussee, A diagonal form of an implicit approximate factorization algorithm, Journal of Computational Physics, 1981, vol. 39, pp.371-390.
DOI: 10.1016/0021-9991(81)90156-x
Google Scholar
[15]
S. K. Godunov, A finite-difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mathematicheskii Sbomik, 1959, vol. 47, pp.271-390.
Google Scholar
[16]
B. S. Baldwin, H. Lomax, Thin layer approximation and algebraic model for separated flows, AIAA Conference, AIAA-78-257.
Google Scholar
[17]
J. M. Conley, Modification of the mml turbulence model for adverse pressure gradient flows, AIAA Conference, AIAA- 94-2715.
DOI: 10.2514/6.1994-2715
Google Scholar
[18]
R. H. Li, G. S. Feng, Differential equation numerical resolution (in Chinese), China Higher Education Press. Beijing, pp.330-332, (1995).
Google Scholar
[19]
Z. X. Han, B. H. Dennis, Simultaneous prediction of external flow-field and temperature in internally cooled 3-d turbine blade material., AIAA Conference, GT2000-253.
DOI: 10.1115/2000-gt-0253
Google Scholar
[20]
Z. Q. Zhu, Engineering Computational Fluid Dynamics. Beijing (in Chinese), Beihang University Press, Beijing, p.134, (1998).
Google Scholar
[21]
L. Yang, Z. P. Zou, F. F. Ning, et al., Simulation of Boundary Layer Transition, Journal of Aerospace Power, 2005, vol. 20(3), pp.355-360.
Google Scholar