[1]
S.H. Lin and K. Argasinski, Fluoropolymer alloys: performance optimization of PVDF alloys, in Fluopolymers 2: Properties, G. Hougham, P.E. Cassidy, K. Johns and T. Davison (editors), New York: Plenum Press, vol. 122, (1999).
Google Scholar
[2]
S. Krause, J.J. Gormley, N. Roman, J.A. Shetter and W.H. Wantanade, Glass temperatures of some acrylic polymers, J. Polym. Sci. A-Polym. Chem., vol. 3, pp.3573-3586, (1965).
DOI: 10.1002/pol.1965.100031020
Google Scholar
[3]
A.R. Katrizky, P. Pachwal, K.W. Law, M. Karelson and V.S. Lobanov, Prediction of polymer glass transition temperature using a general quantitative structure-property relationship treatment, J. Chem. Inf. Comput. Sci., vol. 36, pp.879-884, (1996).
DOI: 10.1021/ci950156w
Google Scholar
[4]
J. Bicerano, Prediction of polymers properties. 2nd ed. New York: Marcel Dekker, (1996).
Google Scholar
[5]
P. Camelio, C.C. Cypcar, V. lazzeri and B. Waegell, A novel approach toward the prediction of the glass transition temperature: application of the EVM model, a designer QSPR equation for the prediction of acrylate and methacrylate polymers, J. Polym. Sci. A-Polym. Chem., vol. 35, pp.2579-2591, (1997).
DOI: 10.1002/(sici)1099-0518(19970930)35:13<2579::aid-pola5>3.0.co;2-m
Google Scholar
[6]
W.Q. Liu and C.Z. Cao. Colloid, Artificial neural network prediction of glass transition temperature of polymers, Polym. Sci., vol. 287, pp.811-818, (2009).
DOI: 10.1007/s00396-009-2035-y
Google Scholar
[7]
C. Duce, A. Micheli, R. Solaro, A. Starita and M.R. Tine, Recursive neural networks predictions of glass transition temperature from monomer structure: an application to acylic and methacrylic polymers, J. Math. Chem., vol. 46, pp.729-755, (2009).
DOI: 10.1007/s10910-009-9547-z
Google Scholar
[8]
S.J. Joyce and D.J. Osguthorpe, Neural network prediction of glass- transition temperatures from monomer structure, J. Chem. Soc. Faraday Trans., vol. 91, pp.2491-2496, (1995).
DOI: 10.1039/ft9959102491
Google Scholar
[9]
J.F. Dai, S.L. Liu, Y. Chen and C.Z. Cao, A quantitative structure- property relationship study on glass transition temperature of polyacrylates, Acta. Polym. Sinica, vol. 3, pp.343-347, (2003).
Google Scholar
[10]
X.L. Yu, B. Yi, X.Y. Wang and Z.M. Xie, Correlation between the glass transition temperatures and multipole moments for polymers, Chemical Physics, vol. 332, pp.115-118, (2007).
DOI: 10.1016/j.chemphys.2006.11.029
Google Scholar
[11]
V. Vapnik, The natural of statistical learning theory, New York: Springer, (1995).
Google Scholar
[12]
C.Z. Cai, X.J. Zhu, Y.F. Wen, J.F. Pei and G.L. Wang, Predicting the superconducting transition temperature Tc of BiPbSrCaCuOF superconductors by using support vector regression, J. Supercond. Nov. Magn., vol. 23, pp.737-740, (2010).
DOI: 10.1007/s10948-010-0732-x
Google Scholar
[13]
D.O. Whiteson, and N.A. Naumann, Support vector regression as a signal discriminator in high energy physics, Neurocomputing, vol. 55, pp.251-264, (2003).
DOI: 10.1016/s0925-2312(03)00366-7
Google Scholar
[14]
Z. Yuan and B.X. Huang, Prediction of protein accessible surface areas by support vector regression, Proteins, vol. 57, pp.558-564, (2004).
DOI: 10.1002/prot.20234
Google Scholar
[15]
C.Z. Cai, W.L. Wang, L.Z. Sun and Y.Z. Chen, Protein function classification via support vector machine approach, Mathematical Biosciences, vol. 185, no. 2, pp.111-122, (2003).
DOI: 10.1016/s0025-5564(03)00096-8
Google Scholar
[16]
C.Z. Cai, L.Y. Han, Z.L. Ji, X. Chen and Y.Z. Chen. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence, Nucleic Acids Research, vol. 31, pp.3692-3697, (2003).
DOI: 10.1093/nar/gkg600
Google Scholar
[17]
C.Z. Cai, W.L. Wang and Y.Z. Chen, Support vector machine classification of physical and biological datasets, Int. J. Mod. Phys. C, vol. 14, pp.575-585, (2003).
DOI: 10.1142/s0129183103004759
Google Scholar
[18]
J. Song and K. Burrage, Predicting residue-wise contact orders in proteins by support vector regression, BMC Bioinformatics, vol. 7, p.425, (2006).
DOI: 10.1186/1471-2105-7-425
Google Scholar
[19]
Y.F. Wen, C.Z. Cai, X.H. Liu, J.F. Pei, X.J. Zhu and T.T. Xiao, Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression, Corrosion Science, vol. 51, pp.349-355, (2009).
DOI: 10.1016/j.corsci.2008.10.038
Google Scholar
[20]
J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp.1942-1948, (1995).
Google Scholar