[1]
K. Grave, M.K. Hansen, H. Kruse, M. Bangen and A.B. Kristoffersen, Prescription of antimicrobial drugs in Norwegian aquaculture with an emphasis on "new" fish species, Preventive Veterinary Medicine, vol. 83, no. 2, pp.156-169, Feb (2008).
DOI: 10.1016/j.prevetmed.2007.07.002
Google Scholar
[2]
B. Magnadóttir, S. Lange, A. Steinarsson and S. Gudmundsdóttir, The ontogenic development of innate immune parameters of cod (Gadus morhua L. ), " Comparative Biochemistry and Physiology, Part B, Biochemistry & Molecular Biology, vol. 139, no. 2, pp.217-224, Oct (2004).
DOI: 10.1016/j.cbpc.2004.07.009
Google Scholar
[3]
B. Magnadóttir, Innate immunity of fish (overview), Fish and Shellfish Immunology, vol. 20, no. 2, pp.137-151, Feb (2006).
DOI: 10.1016/j.fsi.2004.09.006
Google Scholar
[4]
M.B. Schrøder, T. Ellingsen, H. Mikkelsen, E.A. Norderhus and V. Lund, Comparison of antibody responses in Atlantic cod (Gadusmorhua L. ) to Vib rio anguillarum, Aeromonas salmonicida and Francisella sp, Fish and Shellfish Immunology, vol. 27, no. 2, pp.112-119, Aug (2009).
DOI: 10.1016/j.fsi.2008.11.016
Google Scholar
[5]
D. Robinette, S. Wada, T. Arroll, M.G. Levy, W.L. Miller and E.J. Noga, Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: characterization of broad-spectrum histone-like antimicrobial proteins, Cellular and Molecular Life Sciences : CMLS, vol. 54, no. 5, pp.467-475, May (1998).
DOI: 10.1007/s000180050175
Google Scholar
[6]
S. Subramanian, N.W. Ross and S.L. MacKinnon, Comparison of antimicrobial activity in the epidermal mucus extracts of fish, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol. 150, no. 1, pp.85-92, May (2008).
DOI: 10.1016/j.cbpb.2008.01.011
Google Scholar
[7]
C. Lemaître, N. Orange, P. Saglio, N. Saint, J. Gagnon and G. Molle, Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp (Cyprinus carpio), European Journal of Biochemistry, vol. 240, no. 1, pp.143-149, Aug (1996).
DOI: 10.1111/j.1432-1033.1996.0143h.x
Google Scholar
[8]
J. Ruangsri, J.M. Fernandes, M. Brinchmann and V. Kiron, Antimicrobial activity in the tissues of Atlantic cod (Gadus morhua L. ), Fish and Shellfish Immunology, vol. 28, no. 5-6, pp.879-886, May-Jun (2010).
DOI: 10.1016/j.fsi.2010.02.006
Google Scholar
[9]
P.G. Nieuwegiessen, J. Olwo, S. Khong, A.J. JohanVerreth and J.W. Schrama, Effects of age and stocking density on the welfare of African catfish, Clarias gariepinus Burchell, Aquaculture, vol. 288, no. 1-2, pp.69-75, March (2009).
DOI: 10.1016/j.aquaculture.2008.11.009
Google Scholar
[10]
X.C. Zhang, Z.J. Sun, J., Gao Q.M. Hou, G.Q. Lin and R.P. Zhuo, Purification and characterization of antibacterial Peptide EABP-1 from annelid eisenia fetida, Chinese Journal of Applied & Environmental Biology, vol. 9, no. 1, pp.36-38, Jan-Feb (2003).
Google Scholar
[11]
C. Hellio, A.M. Pons, C. Beaupoil, N. Bourgougnon and Y.L. Gal, Antibacterial, antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus, International Journal of Antimicrobial Agents, vol. 20, no. 3, pp.214-219, Sep (2002).
DOI: 10.1016/s0924-8579(02)00172-3
Google Scholar
[12]
H. Schägger, Tricine–SDS-PAGE, Nature Protocols, vol. 1, pp.16-22, May (2006).
DOI: 10.1038/nprot.2006.4
Google Scholar
[13]
A.D. Pickering, The distribution of mucous cells in the epidermis of the brown trout Salmo trutta (L. ) and the char Salvelinus alpinus (L. ), Journal of Fish Biology, vol. 6, pp.111-118, March (1974).
DOI: 10.1111/j.1095-8649.1974.tb04531.x
Google Scholar
[14]
K.L. Shephard, Mucus on the epidermis of fish and its influence on drug delivery, Advanced Drug Delivery Reviews, vol. 11, no. 3, pp.403-417, September (1993).
DOI: 10.1016/0169-409x(93)90018-y
Google Scholar
[15]
A.E. Ellis, Innate host defense mechanisms of fish against viruses and bacteria, Developmental and Comparative Immunology, vol. 25, no. 8-9, pp.827-839, Oct-Dec (2001).
DOI: 10.1016/s0145-305x(01)00038-6
Google Scholar
[16]
O. Nakamura, T. Watanabe and H. Kamiya, Muramoto Galectin containing cells in the skin and mucosal tissues in Japanese conger eel, Conger myriaster: an immunohistochemical study, Developmental and Comparative Immunology, vol. 25, no. 5-6, pp.431-437, Jun-Jul (2001).
DOI: 10.1016/s0145-305x(01)00012-x
Google Scholar
[17]
N. Iijima, N. Tanimoto, Y. Emoto, Y. Morita, K. Uematsu, T. Murakami and T. Nakai, Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major, European Journal of Biochemistry / FEBS, vol. 270, no. 4, pp.675-686, Feb (2003).
DOI: 10.1046/j.1432-1033.2003.03419.x
Google Scholar
[18]
S.K. Agarwal, T.K. Banerjee and A.K. Mittal, Physiological adaptation in relation to hyperosmotic stress in the epidermis of a fresh-water teleost Barbus sophor (Cypriniformes, Cyprinidae): a histochemical study, Zeitschrift für mikroskopisch-anatomische Forschung, vol. 93, no. 1, pp.51-64, (1979).
Google Scholar
[19]
E.M. Zuchelkowski, R.C. Lantzm and D.E. Hinton, Effects of acid-stress on epidermal mucous cells of the brown bullhead Ictalurus nebulosus (LeSeur): a morphometric study, The Anatomical Record, vol. 200, no. 1, pp.33-39, May (1981).
DOI: 10.1002/ar.1092000104
Google Scholar
[20]
I.Y. Park, C.B. Park, M.S. Kim and S.C. Kim, Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus, FEBS Letters, vol. 437, no. 3, pp.258-262, Oct (1998).
DOI: 10.1016/s0014-5793(98)01238-1
Google Scholar